By Thibault Taillade , Laetitia Thirion-Lefevre and Régis Guinvarc’h

Change detection (CD) in SAR (Synthethic Aperture Radar) images has been widely studied in recent years and has become increasingly attractive due to the growth of available datasets. The potential of CD has been shown in different fields, including disaster monitoring and military applications. Access to multi-temporal SAR images of the same scene is now possible, and therefore we can improve the performance and the interpretation of CD. Apart from specific SAR campaign measurements, the ground truth of the scene is usually unknown or only partially known when dealing with open data. This is a critical issue when the purpose is to detect targets, such as vehicles or ships. Indeed, typical change detection methods can only provide relative changes; the actual number of targets on each day cannot be determined. Ideally, this change detection should occur between a target-free image and one with the objects of interest. To do so, we propose to benefit from pixels’ intrinsic temporal behavior to compute a frozen background reference (FBR) image and perform change detection from this reference image. We will then consider that the scene consists only of immobile objects (e.g., buildings and trees) and removable objects that can appear and disappear from acquisition to another (e.g., cars and ships). Our FBR images will, therefore, aim to estimate the immobile background of the scene to obtain, after change detection, the exact amount of targets present on each day. This study was conducted first with simulated SAR data for different number of acquisition dates and Signal-to-Noise Ratio (SNR). We presented an application in the region of Singapore to estimate the number of ships in the study area for each acquisition.

Read full text