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RADAR emitter classification aims at identifying the
RADAR emitters present in a measured signal to gain elec-
tronic intelligence in a given environment. Recent advances
in RADAR technologies make this task more difficult, as
RADAR emitters exhibit more complex behaviors: agility in
frequency and pulse repetition intervals, complex scanning
patterns, etc. In this work, we assume that RADAR pulses have
been deinterleaved, that is, the analyzed pulses are assumed
to be emitted from a single emitter. Several methods exist
to solve this problem, based on the analysis of the pulse
repetition intervals [1], [2], deep learning [3], or hierarchical
clustering with optimal transport distances [4]. Several su-
pervised classification methods have been proposed to deal
with more complex cases. Most of the methods are based
on Deep Learning models and consider a small number of
RADAR classes [5]–[9]. Algorithms and methodologies are
often developed using small datasets or simulated data. Most
of the previous methods are based on simulated data, and their
result performance strongly relies on the simulator’s accuracy.
Technological developments have modified the recognition
process. The profiles of transmitters have become more and
more complex, enhancing the existing panorama of transmit-
ters of new types with more varied patterns. New methods have
been developed in order to compare the group characteristics
to a known database, also allowing to detect new transmitters
[10], [11].

METHODOLOGY

We introduce a classification method based on an opti-
mal transport distance between collected RADAR pulses and
RADAR emitter models from a reference database containing
more than 60 classes.

A. Data Description

Data are collected by a receiver, listening on a large band-
with. Pulses are then segmented, analyzed, and described by
four features: Frequency (fn), Pulse width (wn), Level (gn),
Time of Arrival (tn). Fig. 1 shows a simulated signal gathering
the pulses of five different emitters. In the top plot, the pulse
level is plotted as a function of time, showing that several
RADAR emitters can be active simultaneously. In the bottom

plot, pulses are plotted based on their estimated frequency and
pulse width. One can clearly see that a given emitter may emit
on different frequencies (e.g., six frequencies for emitter 1).
Estimated pulse widths are truncated for low-energy pulses,
mainly when the receiver is in a side-lobe of the emitter. Real
data are challenging to acquire, so that the method will be
validated on simulated data. Here, we assume that the RADAR
pulses have been correctly separated.

Fig. 1. Set of pulses contained five transmitters. Each color represents an
emitter.

B. Algorithm

The proposed methodology is based on the development
of a distance between a set of received RADAR pulses and a
description of the characteristics of a RADAR emitter from a
reference database. Classification is made by identifying the
closest (in terms of distribution distance) RADAR emitters



to the received data. Optimal transport makes it possible to
find a mapping between an original mass distribution and a
different target distribution [12], [13]. In this work, we focus
on the part of this theory dealing with discrete probability
distributions, useful for describing received data and different
classes of typical RADARs.

In particular, we consider two discrete probability distribu-
tions ν =

∑N
n=1 anδxn and µ =

∑M
m=1 bmδym , with a =

(a1, . . . aN ) ∈ RN
+ ,

∑N
n=1 an = 1, and b = (b1, . . . bM ) ∈

RM
+ ,

∑M
m=1 bm = 1. A transport plan P between ν and µ

is defined by its coefficients Pnm, representing the amount of
mass taken from xn to ym. With c(·, ·) a cost function, and
Cnm = c(xn, ym) the cost of transporting a unit of mass from
xn to yn, the total cost C(P) of a transport plan is

C(P) =

N∑
n=1

M∑
m=1

CnmPnm (1)

The consistency of the transport plan P with ν and µ is
guaranteed by P1M = a,PT1N = bT . The optimal transport
plan P⋆ is defined as the minimizer of Eq. (1) under the
following constraints:

P⋆ = argmin
P∈RN×M

+

C(P) subject to P1M = a,PT1N = bT

(2)
A set of pulses class is then assigned by identifying the

closest RADAR class in the optimal transport distance sense.

C. Results

Fig. 2 shows the result of our classification methodology
applied to emitter 1 from Fig. 1. The plot on the left overlays
the pulses and the three closest emitter classes. The blue dots
fit very well with those on the data. The classifier correctly
identifies the emitter present in the data. The plot on the
right shows us the transport plan between the distribution
of the data and each outputs [14]. Output 2 represents a
single-frequency transmitter, so the data points are all sent
to the same location. Output 3 represents a RADAR that
transmits on six different frequency bands, so the data points
are sent on the different Output 1 respecting the proportions
of Output 1; this is why pulses around a given frequency are
not all sent to the same point.

The results obtained on the simulated data are very en-
couraging and allow us to identify the class of transmitters
confidently. Moreover, the methodology can handle a large
number of classes to identify. In order to improve the clas-
sification results, several perspectives are of interest: First,
one could add a third dimension in the optimal transport
theory to better discriminate RADARs. Finally, to propose a
complete classification method, this method should be capable
of detecting emitters that not present in the database.

Fig. 2. Classification output for set of pulses 1 in two dimensions. The plot
on the left overlap the set of pulses 1 with the first three classes identified by
the algorithm. The plot on the right represents the transport plan between the
da and those of the algorithm’s outputs.
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