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Résumé étendu

Introduction
Le radar Hautes Fréquences (HF) à ondes de surface permet de détecter des bateaux à
de grandes distances. Il utilise la propagation des ondes le long de la surface de la mer
pour détecter des cibles au-delà de l'horizon.

Figure 1: Un réseau de réception côtier d'un radar HFSWR.

Ce radar est idéalement utilisé pour la surveillance maritime des eaux côtières à des
distances supérieures à 200 km ou pour la mesure de paramètres océanographiques. Un
réseau de réception conventionnel est représenté en Fig. 1.

La thèse présente un nouveau concept de radar HF où le réseau de réception est
placé sur des bouées en mer. Cette nouvelle approche permet de déployer des réseaux
de plus grandes dimensions pour améliorer les performances de détection du radar.
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Figure 2: Réseau de réception sur bouées en mer.

Les problématiques a�érentes sont évoquées dans le premier chapitre de cette thèse.
Dans le chapitre 2, ce nouveau concept de réseau de réception �ottant est présenté

en dé�nissant notamment les notions de réseau déformé et non déformé. Le réseau non
déformé est utilisé comme référence pour quanti�er les perturbations du diagramme de
rayonnement associé au réseau déformé, le réseau déformé étant dé�ni comme le réseau
�ottant sur bouées. Un modèle numérique simple permettant de calculer le mouvement
d'une bouée sur une surface de mer discrétisée sera également présenté. Il garantit une
corrélation entre la forme de la surface de mer et le mouvement de la bouée.

Dans le chapitre 3, nous étudierons le réseau de réception avec déformations. Les
di�érentes sources de perturbations seront présentées en fonction du type de déplace-
ment (vertical le long de l'axe des z et horizontal le long des axes x et y). Des méthodes
de corrections seront ensuite proposées qui consistent en une modi�cation du jeu de
poids d'excitation du réseau.

Une étude de la robustesse des algorithmes de détection de directions d'arrivée sera
réalisée dans le chapitre 4 en fonction de la déformation du réseau de réception.

Pour �nir, une expérimentation avec une antenne �ottante est présentée dans le
chapitre 5. Elle vise à valider, outre la faisabilité de la mesure, l'allure du signal reçu.
En e�et, celui-ci pourrait être modulé par les mouvements de la mer.

CHAPITRE 1
Le premier chapitre apporte un certain nombre d'informations sur les di�érents do-
maines abordés pour cette étude : les radars HFSWR et leurs applications, les réseaux
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d'antennes phasés, l'utilisation d'une bouée comme nouveau support d'antenne pour le
réseau de réception.

Une deuxième partie évoque les applications possibles d'un tel radar. On distingue
deux grands domaines. Le premier concerne la détection de cible dans le cadre de
la surveillance de vastes zones maritimes. Le second est la mesure de paramètres
océanographiques comme la vitesse du vent, des courants etc... Plusieurs exemples
sont donnés dans ce chapitre.

Les radars HFSWR requièrent un déploiement du réseau de réception le long de
la côte, près de la mer pour permettre une bonne excitation de l'onde de surface. De
plus, pour avoir une bonne précision en détection angulaire, son réseau de réception
doit être le plus large possible. Comme le radar travaille dans la bande HF (3-30 MHz),
sa longueur d'onde est égale à plusieurs centaines de métres et son réseau de réception
est donc de grande dimension.

Un des problèmes rencontrés lors du déploiement d'un tel radar et (particuliérement
avec son réseau de réception) est de trouver un emplacement le long de la côte su�sam-
ment large pour l'accueillir.

Une solution alternative au réseau classique est de déplacer le réseau de réception
du radar sur des bouées en mer (cf Fig. 2.8). Ainsi, l'emplacement du radar peut être
trouvé plus facilement. Malheureusement ce nouveau type de déploiement génère de
nouveaux problèmes liés à la déformation du réseau par le mouvement de la mer.

Cette thèse propose une étude de ce nouveau concept. Les perturbations générées
par les déformations du réseau seront étudiées. Des méthodes spéci�ques de correction
pour limiter leurs e�ets seront ensuite présentées.

CHAPITRE 2

Dé�nition du système : réseau déformé et non déformé

Le réseau non déformé est un réseau régulier composé de N éléments avec un espace
interélément de λ/2, λ étant la longueur d'onde de fréquence de fonctionnement f . Il
est disposé le long de l'axe des x.

Nous supposons par ailleurs que chaque antenne est disposée sur une bouée �ottant
sur la mer. Chaque bouée est ancrée au fond de la mer avec un câble à une profondeur
H de la surface de mer de référence (cf Fig. 2 et Fig. 4).

Le réseau déformé est le résultat des mouvements de la mer. Ces mouvements
génèrent des perturbations dans le diagramme de rayonnement.
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Figure 3: Réseau non déformé.

Modélisation de la surface de mer
Les déplacements des bouées sont calculés à partir d'une modélisation réaliste de la mer.

état de mer Description hauteurs typiques
des vagues (m)

0 Calm 0
1 Smooth 0 to 0.3
2 Slight 0.3 to 0.9
3 Moderate 0.9 to 1.5
4 Rough 1.5 to 2.4
5 Very Rough 2.4 to 3.6
6 High 3.6 to 6
7 very High 6 to 12
8 Precipitous 12

Table 1: Echelle de Douglas

Les surfaces de mer sont ainsi générées à partir des spectres de mer de Pierson
Moskovitz [28]. Di�érents spectres peuvent être choisis suivant une hauteur de vagues
typique. L'échelle de Douglas les classi�e en fonction des di�érents états de mer (cf
Table 2.1).
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Figure 4: Dé�nition de L, la longueur du câble.

Les surfaces de mer sont de plus calculées pour générer des corrélations entre deux
pas temporels successifs. Tous ces éléments sont donnés dans la toolbox Matlab WAFO
[14].

Déplacement des bouées
Dans cette partie du chapitre, un algorithme simple est proposé permettant de calculer
les di�érentes positions de la bouée sur la mer. Ces positions sont déduites de la forme
de la surface de mer.

Cet algorithme permet de modéliser le déplacement des bouées à partir de la matrice
des hauteurs de vagues de la surface de mer et il est utilisé pour quanti�er les pertur-
bations générées par le réseau déformé. Il a été précédemment démontré dans [11] et
[10] que les mouvements de bouées altèrent les diagrammes de rayonnement. Pour com-
penser ces problèmes, une méthode de correction a été développée et est présentée dans
le chapitre suivante. Nous supposons que les mouvements horizontaux sont négligeables
et nous concentrons notre étude sur les déplacements verticaux.

Un exemple de déplacement d'antennes est donné en Fig. 2.10. Elle montre l'évolution
temporelle de la bouée autour de sa position initiale.

CHAPITRE 3
Le chapitre 3 présente les perturbations générées par la déformation du réseau (avec un
déplacement vertical et horizontal) et leurs méthodes de correction associées.
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Figure 5: Exemple de déplacement d'antenne.

Réseau de réception avec une déformation verticale

Dans cette partie, les di�érents éléments du réseau de réception sont des dipôles verti-
caux. Dans le déplacement vertical [11], les principales perturbations proviennent de la
modi�cation du couplage dans le réseau quand les dipôles bougent verticalement.

Figure 6: Représentation du couplage d'un dipôle.

I = [ i1, i2, . . . , iN ]T est dé�ni comme le vecteur de courants du port de
l'antenne qui produit le diagramme de rayonnement désiré (cf Fig. 3.9). La tension
Vg = [ vg1, vg2, . . . , vgN ]T peut alors être dé�nie comme :
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Vg = (Z + ZgId) I (1)

où Zg est l'impédance de la source, Z est la matrice impédance (représentant le couplage)
et Id la matrice identité. La connaissance de Z permet alors de calculer les bons coe-
e�cients. Pour simpli�er, dans l'exemple suivant, Z est construite comme l'impédance
mutuelle de deux dipôles en espace libre pour di�érents décalages verticaux entre les
antennes [23].
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Figure 7: Diagramme de rayonnement d'un réseau uniforme de 10 antennes avec une déformation
verticale, avec et sans correction.

La �gure 3.10 montre l'e�et de la méthode de correction sur un réseau de 10 éléments.
Elle compare le diagramme de rayonnement obtenu pour deux tensions di�érentes Vg.
Le cas sans correction correspond à un réseau où les coordonnées de l'antenne sont dif-
férentes mais Vg est calculé en utilisant la matrice Z du réseau non déformé.

Le cas avec correction correspond au même réseau mais il est maintenant utilisé
avec la matrice Z du réseau déformé. Comme nous l'avons vu, la méthode de correction
permet une décroissance signi�cative des lobes secondaires.

Réseau de réception avec une déformation horizontale
En considérant une déformation du réseau d'antennes avec des mouvements horizontaux,
le problème est un peu di�érent. On se place tout d'abord dans le cas d'une déformation
longitudinale (le long de l'axe du réseau (O, x) ). Les principales perturbations ne
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résultent pas de la modi�cation du couplage mais de la modi�cation de l'espacement
inter élément dans le réseau. Le réseau déformé peut être vu comme un réseau linéaire
avec un espacement non régulier entre les éléments. Le couplage est un deuxième e�et
qui peut être corrigé par la méthode présentée dans la partie précédente. Celle-ci ne
sera pas discutée à nouveau ici.

Méthodes de compensation pour la déformation longitudinale
Nous supposons que les positions des antennes sont parfaitement connues. Le principe
de la méthode consiste à pondérer les changements des espacements inter éléments par
une modi�cation des poids d'excitation. Haupt a étudié le problème réciproque en [17].

Pour la suite, in est le courant de l'antenne n pour un réseau non déformé et ĩn est le
coe�cient correspondant utilisé pour le réseau déformé. Les compensations peuvent se
résumer en forçant les coe�cients pour lesquels les nuls du diagramme de rayonnement
correspondent à ceux du réseau non déformé. Un système linéaire est alors obtenu :

N∑

n=1

ĩne
jkx̃num =

N∑

n=1

ine
jkxnum m = 1, ..., N − 1 (2)

où um = cosφm et φm est l'angle azimut du nul m dans le diagramme de rayonnement.
Eq. 3.9 représente un système linéaire de N − 1 équations pour N inconnues. Nous
choisissons arbitrairement ĩN = 1 pour �xer le niveau de proportionnalité de tous les
poids ĩn. Eq. 3.10 est le nouveau système linéaire qui doit être résolu :

N−1∑

n=1

ĩne
jkx̃num =

N∑

n=1

ine
jkxnum − ejkx̃Num m = 1, ..., N − 1 (3)

Eq. 3.10 peut être réécrite avec les représentations matricielles suivantes avec X̃1 =
[ x̃1 x̃2 . . . x̃N−1 ].

ẼĨ1 = EI −A (4)

avec

U = [ u1 u2 . . . uN−1 ]T (5)

E = exp (jkUX) (6)

Ẽ = exp
(
jkUX̃1

)
(7)

où Ĩ1 =
[
ĩ1 ĩ2 . . . ĩN−1

]T et A =
[
ejkx̃Nu1 ejkx̃Nu2 . . . ejkx̃NuN−1

]T . Comme I est
connu, nous pouvons facilement calculer Ĩ1 avec Eq. 3.15.
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Ĩ1 = Ẽ−1 (EI −A) (8)

Ĩ, qui correspond à tous les poids de la méthode de correction, peut être facilement
calculé :

Ĩ = [ĨT1 , 1]T (9)

Dans la partie suivante, la méthode de correction est étendue aux mouvements lon-
gitudinaux et transverses.

Méthodes pour la déformation longitudinale et transverse
Les corrections des mouvements transverses et longitudinaux peuvent être réalisées si-
multanément. Un nouveau système linéaire est alors dé�ni (Eq. 3.17) :

N∑

n=1

ĩne
jk(x̃num+ỹnu′m) =

N∑

n=1

ine
jkxnum m = 1, ..., N − 1 (10)

avec u′m = sinφm.

Pour des déformations longitudinales, le réseau déformé résultant est un réseau
linéaire non régulier. Avec les deux déformations longitudinales et transverses, le réseau
n'est plus linéaire. Eq. 3.17 est utilisée pour obtenir des nuls dans le diagramme de
rayonnement avant (φ ∈ [0, π]). Aucun contrôle sur le diagramme arrière n'est possible,
ce qui n'est pas un problème pour nos applications en radar HF. Une nouvelle expression
de u′m est dé�nie :

U ′ = [ u′1 u
′
2 . . . u′N−1 ]T (11)

La nouvelle matrice Ẽ est donnée par :

Ẽ = exp
(
jk

(
UX̃1 + U ′Ỹ1

))
(12)

avec Ỹ1 = [ ỹ1 ỹ2 . . . ỹN−1 ] et les courants utilisés par les équations 3.15 et 3.16 où A
est maintenant dé�ni parA =

[
ejk(x̃Nu1+ỹNu

′
1) ejk(x̃Nu2+ỹNu

′
2) . . . ejk(x̃NuN−1+ỹNu

′
N−1)

]T
.

En utilisant cette formulation, un exemple est donné dans la partie suivante.

Résultat pour la méthode de correction horizontale
Trois déplacements sont présentés (générant plus ou moins de perturbations dans le
réseau de réception) correspondant à trois états de mer di�érents (leurs valeurs étant
1, 3 et 6).
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Figure 8: Diagramme sans correction (a) (c) (e) et avec correction (b) (d) (f) pour un état de mer 1:
(a) et (b), état de mer 3: (c) et (d), état de mer 6: (e) et (f)

La �gure 3.15 représente le diagramme de rayonnement en fonction du temps avec
et sans correction. Pour une plus grande clarté, la �gure 3.16 représente le même
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Figure 9: Seuillage du diagramme de rayonnement au-dessus de -3 dB (direction du lobe principale
et ouverture à -3 dB): sans correction (a) (c) (e) et avec correction (b) (d) (f) pour un état de mer 1:
(a) and (b), état de mer 3: (c) et (d), état de mer 6: (e) et (f)

diagramme de rayonnement quand un seuil à -3 dB est appliqué. Il permet de visualiser
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la direction du lobe principal et l'ouverture à -3 dB avec et sans correction.

� Pour un état de mer de 1, la mer est lisse (cf Tableau 2.1) et les déformations dans
le réseau sont faibles. Le niveau de lobe secondaire augmente dans des directions
spéci�ques de φ (cf Fig. 3.15 (a)). Le lobe principal n'est pas a�ecté par le
mouvement de la mer (cf Fig. 3.16 (a)).

� Pour un état de mer de 3, la mer est modérée et les mouvements génèrent de fortes
perturbations dans le diagramme de rayonnement (cf Fig. 3.15 (b)). Les niveaux
de lobes secondaires augmentent jusqu'à -6.6 dB (à t=10 s). Pour cet état de mer,
le lobe principal n'est pas signi�cativement a�ecté (cf Fig. 3.16 (b)).

� Pour un état de mer de 6, les perturbations dans le diagramme de rayonnement
sont importantes (cf Fig. 3.15 (c) and 3.16 (c)). La direction du lobe principal
change signi�cativement et le niveau de lobes secondaires peut être très haut (par
exemple, on observe un niveau de lobe secondaire jusqu'à -2.4 dB, à t=10 s).

Cependant, notre méthode de correction a conservé la direction de notre lobe prin-
cipal et son ouverture à -3 dB (10◦ avec une direction principale égale à 0◦ en Fig.
3.16 (b) (d) (f)) comparé aux résultats sans correction (plus de 12◦ de largeur de lobe
principal, sa direction variant de ±5◦) et ce quelque soit l'état de mer (jusqu'à 6).

La méthode de correction réduit de plus les niveaux de lobes secondaires pour
[0, φN−1[ (avec un réseau de N = 10 antennes, φN−1 = 60◦).

Pour φ plus large que φN−1, la méthode de correction n'est plus valide. Comme
illustration, Fig. 3.18 donne une coupe des résultats obtenus pour t = 2 s et un état de
mer de 4. In [0, φN−1[, le niveau maximum des lobes secondaires est égal à -12.59 dB,
au lieu de -13 dB pour un réseau non déformé et -9 dB pour [φN−1, π].

Une méthode a été présentée permettant de corriger les déplacements verticaux et
horizontaux d'antennes. La méthode de correction verticale utilise à la connaissance des
modi�cations de la matrice de couplage. La méthode de correction horizontale repose
sur le forçage des nuls dans le diagramme de rayonnement d'un réseau déformé, le but
étant d'obtenir les mêmes zéros que ceux du réseau non déformé.

Ces méthodes permettent de réaliser des compensations en temps réel de réseau
d'antenne de HFSWR déformé. Elles diminuent les lobes secondaires qui apparaissent
lorsque le réseau se déforme.

Une comparaison avec des méthodes itératives a montré que, si ces dernières donnent
des résultats sensiblement meilleurs, leur temps de calcul est incommensurablement
supérieur.
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Figure 10: Diagramme de rayonnement avec et sans correction pour un état de mer de 4

CHAPITRE 4

Le chapitre 4 traite de l'estimation de la direction d'arrivée à partir de réseaux d'antennes
déformables.

La localisation d'une cible passe par un procédé de traitement d'antenne. Celui-ci
permet, à partir des signaux reçus, d'extraire un certain nombre d'informations sur la
cible, notamment sa direction d'arrivée (DOA, Direction Of Arrival). De nombreux
algorithmes ont été développés en ce sens depuis une trentaine d'années. Le plus connu
d'entre eux est certainement l'algorithme MUSIC (ou Multiple Signal Classi�cation). Il
permet de déduire les directions d'arrivée de signaux émis par des cibles en extrayant
des propriétés de la matrice de corrélation de ces mêmes signaux reçus sur une antenne
réseau. Développé pour des antennes dont la position de chaque capteur est connue,
il est intéressant de tester sa robustesse sur des antennes dont la position des capteurs
n'est pas connue de manière exacte, mais avec une certaine erreur : ceci correspond à
notre application, avec une antenne �ottante sur une bouée en mer et équipée d'un ré-
cepteur de type GPS (l'erreur de position de chaque capteur serait alors égale à l'erreur
de précision de la localisation o�erte par un tel système).

Dans ce résumé, l'algorithme MUSIC ne sera pas développé. Une série de simulations
permettront toutefois d'en tester la robustesse aux erreurs de position des capteurs d'une
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antenne réseau.
Le programme mettant en oeuvre l'algorithme MUSIC, e�ectue plusieurs tirages

aléatoires des erreurs de position des capteurs (pour une variance donnée). Il donne
comme résultat une courbe du pourcentage de détection d'une ou plusieurs cibles en
fonction de l'amplitude des déformations.

L'algorithme de Weiss-Friedlander
La méthode de Weiss-Friedlander est basée sur MUSIC en y ajoutant la boucle de double
convergence de l'estimation des DOA et de la position des capteurs de l'antenne réseau.

Simulation et résultat
Performances de l'algorithme MUSIC

L'algorithme MUSIC permet d'obtenir un spectre sur lequel la recherche de maxima
aboutit à la détection de cibles et à l'obtention de leur direction d'arrivée. Si la détec-
tion est optimale et e�cace pour une antenne �xe dont la géométrie est parfaitement
connue, elle est fortement dégradée lorsque la position des capteurs est approximatif.

Il est donc intéressant de quanti�er les limites de fonctionnement de l'algorithme
MUSIC en fonction de la déformation du réseau d'antenne. Pour cela, nous allons faire
varier l'amplitude des déformations du réseau en faisant varier la variance de la loi
normale servant aux tirages aléatoires des erreurs de position. De plus, pour chaque
variance, nous allons réaliser 200 tirages aléatoires, a�n de moyenner les résultats. En-
suite, nous représenterons l'évolution des détections en fonction des amplitudes des
erreurs, représentées par ∆r.

Impact de la taille du fenêtrage sur la détection de cibles Le recours à un
fenêtrage, même large, permet d'améliorer sensiblement la capacité de détection de
l'algorithme. Cette réduction du spectre angulaire à analyser peut être réalisée par une
autre méthode de détection de direction d'arrivée, plus grossiére, comme la formation
de voie utilisée avant MUSIC. Elle permet de restreindre le spectre angulaire à analyser
à un écart angulaire autour de la DOA cherchée.

Pour la suite des simulations de l'algorithme MUSIC, le fenêtrage sera pris à 20◦.

Impact du nombre de cibles à détecter Dans le cadre applicatif de notre étude,
les limites de l'algorithme MUSIC sont atteintes relativement rapidement. En e�et, si
l'on veut détecter un nombre important de cibles à tous les coups, les déformations du
réseau (non connues de MUSIC) doivent être minimes, c'est à dire en dessous du mètre
pour chaque capteur.
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Détection de cibles proches Cette étude montre que plus les cibles sont proches,
plus les déformations du réseau d'antennes ont un e�et dégradant sur la distinction des
cibles.

Il semblerait donc que MUSIC soit relativement robuste aux déformations du réseau
par rapport à sa capacité à distinguer des cibles proches. Il faut néanmoins nuancer
ce constat : le continuum angulaire de précision 0, 1◦ utilisé pour les simulations de
MUSIC équivaut à un calibrage d'antenne suivant 1800 directions (spectre angulaire
[−90◦;90] avec un pas de discrétisation de 0, 1◦). En pratique, un nombre plus restreint
de directions est utilisé pour calibrer les antennes.

Améliorations apportées par la méthode de Weiss-Friedlander
L'algorithme de Weiss-Friedlander trouve de manière itérative une estimation de la po-
sition réelle des capteurs et des directions d'arrivée des cibles. Il est habituellement
appliqué comme traitement d'antenne lorsque les déformations du réseau sont petites
et plus ou moins corrélées entre chaque capteur (déformations du réseau en arc de cercle
par exemple). Il est intéressant, dans le cas de notre étude, d'observer son comporte-
ment pour des déformations d'ordre aléatoire sur chaque capteur.

On remarque une convergence de l'algorithme, qui se fait de manière plus précise
pour de faibles erreurs de position des capteurs. Néanmoins, la convergence n'est pas
totale, c'est à dire que la position estimée des capteurs est légérement di�érente de la
positon réelle, même si la forme générale de l'antenne est bien retranscrite.

Figure 11: Robustesse de MUSIC et Weiss Friedlander pour une detection de 6 cibles (DOA égales à
30◦, 60◦, 80◦, 100◦, 130◦ and 160◦)

La Fig. 4.13 permet d'analyser les améliorations de cette méthode par rapport à
l'algorithme MUSIC. Elle représente le nombre moyen de cibles détectées pour 6 cibles
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présentes en fonction de l'amplitude de la déformation de l'antenne réseau, et ceci pour
l'algorithme MUSIC sans fenêtrage et pour la méthode Weiss-Friedlander (qui ne fait
pas non plus intervenir de fenêtrage dans sa partie algorithmique faisant référence à
MUSIC).

Des améliorations sont nettement présentes. La méthode de Weiss-Friedlander ap-
porte donc de meilleures performances dans une plage d'erreur qui correspond à notre
cas pratique (erreurs de quelques métres).

Conclusion des méthodes de détection de DOA
L'étude menée a permis de tester la robustesse de deux algorithmes de traitement
d'antenne dans le but de détecter la direction d'arrivée des cibles. L'application envis-
agée, à savoir un réseau d'antenne sur bouées en mer, requière la possibilité de détecter
un nombre important de cibles à des distances lointaines.

Au terme des simulations e�ectuées durant la thése, il apparaît que l'algorithme
MUSIC seul ne peut fournir de bonnes performances en terme de détection. Il nécessite
une amélioration de ses performances, fournies par deux méthodes présentées dans ce
rapport.

La premiére consiste à restreindre la zone angulaire pour la recherche de cibles par
MUSIC, ce qui peut être e�ectué par un autre procédé de détection, comme la forma-
tion de voie. La seconde consiste en la méthode de Weiss-Friedlander qui améliore la
détection de cibles par rapport à MUSIC en donnant une estimation de la position des
capteurs de l'antenne réseau.

CHAPITRE 5
Dans les chapitres précédents, nous avons vu que les mouvements d'antennes dégradent
les digrammes de rayonnement. Le deuxiéme problème introduit par le mouvement est
relatif à la modulation du signal de réception sur l'antenne �ottante. En fait, le déplace-
ment de chaque antenne élémentaire sur la mer, indépendamment de la déformation du
réseau génère des modulations dans le signal de réception, introduisant un étalement
des raies de Bragg.

De nombreuses études théoriques ont été menées sur ce sujet. Ce chapitre présente
une expérimentation avec une antenne �ottante, menée sur la pointe de la Garchine en
Bretagne.

Ce site breton a été choisi car un radar HFSWR de type WERA y est déjà opéra-
tionnel pour la mesure de courants de surface en mer d'Iroise. Le but est d'utiliser les



Remerciements xvii

infrastructures existantes de ce radar, c'est à dire toute la partie émission et toute la
partie acquisition des signaux de réception.

En supprimant une des antennes du réseau de réception, une entrée du radar devient
libre et il est donc possible de récupérer le signal de la bouée �ottante en reliant son
antenne avec le système d'acquisition du radar.

Le site
Le site est un terrain militaire où le SHOM (Service Hydrographique et Océanographique
de la Marine) en collaboration avec Actimar et les sociétés Helzel (Hambourg, Alle-
magne) et Seaview (She�eld, Royaume-Uni), a déployé un radar HF WERA, au cours
de l'été 2006. Actimar met en oeuvre ces deux radars et assure leur maintenance pour
un fonctionnement opérationnel.

Descriptif du matériel utilisé
Le radar WERA Le WERA est un radar développé par l'Université de Hambourg
pour des mesures océanographiques. C'est un radar qui a :

� un réseau de 16 antennes en réception

� 4 antennes en émission : les quatre antennes d'émission permettent de former un
faisceau principal vers la mer tout en protégeant le réseau de réception dans un
des deux zéros du diagramme de rayonnement.

Choix de l'antenne de réception L'antenne de réception utilisée est de type Rhode
et Shwarz. C'est une antenne active qui doit donc être alimentée et qui a par ailleurs
l'avantage d'être compacte.

Choix de la bouée L'installation d'une premiére bouée est nécessaire pour limiter
les e�orts générés par la houle sur le câble. L'antenne ne sera pas directement reliée à
cette bouée mais à une plate-forme �ottante (un zodiac de petites dimensions) qui est
elle-même attachée à la bouée.

La Fig. 5.3 présente le système �ottant (bouée + plate-forme �ottante). Des photos
de la plate-forme sont présentées en Fig. 5.10. Elles représentent une boite hermétique
qui abrite tout l'électronique embarqué sur un petit zodiac.

Le GPS RTK Pour avoir une bonne précision du mouvement de l'antenne �ottante en
mer, un GPS doit être �xé sur la plate-forme �ottante. Pour une précision décimétrique
ou centimétrique, un GPS type RTK doit être utilisé.
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Figure 12: Bouée et plate-forme �ottante

(a) (b)

Figure 13: (a) la boite hermétique et (b) le zodiac.

Le GPS était composé de deux éléments. Un premier élément nommé �base� qui reste en
référence sur la côte et un second nommé �mobile� qui est embarqué sur la plate-forme
�ottante. Ces deux éléments communiquent en permanence pour a�ner la position
de l'antenne �ottante. A ce GPS, il faut associer une central inertielle qui permet de
mesurer le roumis et le tangage de la structure �ottante.

Résultat de l'expérimentation
Dans un premier temps, nous nous intéressons au mouvement de la bouée mesurée par
le GPS RTK pour quanti�er son déplacement maximum.

Positions de l'antenne �ottante Les �gures 5.13 et 5.14 montrent la latitude et
la longitude en degré de l'antenne �ottante, mesuré par le GPS RTK pendant toute
l'acquisition, à partir du départ de la plage la plus proche jusqu'à son retour sur cette
même plage. Elle montre clairement que la bouée est restée dans un périmétre de 10 m
×10 m pendant les quatre heures qu'ont duré l'acquisition.
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Figure 14: Latitude et longitude de la bouée �ottante pendant toute l'acquisition.
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Figure 15: Positions de la bouée autour de son point d'ancrage.

Fig. 5.15 représente l'altitude de la bouée pendant cette même acquisition. Le
temps de référence à t=0h correspond à la mise en marche du GPS embarqué. A la
�n de l'installation de la bouée (t=3h), la courbe devient lisse. C'est à ce moment que
l'enregistrement des signaux a commencé. L'évolution de l'altitude correspond à l'e�et
de la marée qui n'a cessé d'augmenter durant tout l'enregistrement des signaux. Son
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Figure 16: Altitude de la bouée pendant toute l'acquisition.

déplacement vertical est de moins de 1 m.
De la même façon, le roulis et tangage sont présentés. Leurs variations restent faibles

(±5◦). Ce point est hautement intéressant pour notre problème car cela implique que
la modulation du signal ne doit pas être importante.

Mesures Radar avec l'antenne �ottante
Deux acquisitions ont été réalisées avec les paramètres standards du radar à une fréquence
centrale de 12.48 MHz. La représentation Range Doppler de l'antenne �ottante est tracé
en Fig. 5.17. Le signal de l'antenne 15 est également représenté comme référence.

Premièrement, la comparaison des deux signaux montre que le signal de l'antenne
�ottante a amplitude moins importante que celui de l'antenne 15. On remarque de plus
que les raies de Bragg du premier ordre et la raie en zéro sont présentes comme prévu.
La Fig. 5.18 montre une coupe à 70 km de ces deux résultats en ajoutant les signaux de
l'antenne 1. La di�érence d'amplitude entre l'antenne 15 et l'antenne 1 est importante.

Le rapport entre le signal (dé�ni comme le maximum de la raie de Bragg négative)
et le clutter (dé�ni comme le signal en dehors des raies de Bragg) est d'environ 25 dB
pour l'antenne 1 et 15 et de 15 dB pour l'antenne �ottante. On trouve également 8 dB
d'atténuation du clutter entre l'antenne 1 et l'antenne 15. Le shelter est en fait situé
plus près de l'antenne 1 que de l'antenne 15. L'écart entre les deux signaux s'explique
en considérant l'ajout d'un câble pour couvrir la distance manquante.
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Figure 17: Représentation en Range Doppler (a) de l'antenne 15 et (b) de l'antenne �ottante.
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Figure 18: Représentation en Doppler à 70km pour l'antenne 1, l'antenne 15 et l'antenne �ottante.

L'antenne �ottante a 14 dB de di�érence d'amplitudes avec le clutter de l'antenne
15 et 22 dB avec les raies de Bragg. Une fois encore, le câble explique cette di�érence :
300 m de câbles ont été rajoutés pour relier l'antenne �ottante et l'antenne 16.

Ce cable ayant une atténuation de 12 dB (1.2 dB pour 100 pieds dans un câble
RG 213 à 30 MHz), il y a également quelques métres supplémentaires entre l'antenne
15 et 16. Mais ces remarques n'expliquent pas les pertes du signal par rapport au clutter.

Lors de la mise en place du câble sur l'eau, les connexions de l'antenne �ottante
n'ont pas été proprement réalisées : le connecteur du câble s'est oxydé. Une autre
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raison possible est que nous n'avons pas eu le temps de véri�er si le signal de l'antenne
�ottante n'était pas inférieur au niveau de bruit du radar.
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Figure 19: (a) Coupe Doppler normalisée à 70 km, et (b) zoom sur les raies de Bragg du premier
ordre.

Malgré un niveau de signal diminué, l'antenne �ottante a pu correctement détecter
les raies de Bragg. Nous avons alors normalisé les signaux de l'antenne 15 et de l'antenne
�ottante (cf Fig. 5.19). Un faible étalement des raies de Bragg est visible, partic-
ulièrement sur la raie négative mais il reste très limité. La raie positive semble légère-
ment découpée mais globalement les raies de Bragg sont retrouvées dans les deux cas
à fb = ±0.36 Hz, correspondant à une fréquence de 12.34 MHz. Ainsi, l'antenne �ot-
tante peut trouver les bonnes positions de raies de Bragg, tout en conservant le même
rapport d'amplitude entre elles. De plus l'étalement limité des raies permet d'envisager
des applications de surveillance maritime.
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Figure 20: (a) Coupe Doppler normalisée à 100 km, et (b) zoom sur les raies de Bragg du premier
ordres.

Ces premières mesures ont validé la faisabilité du concept d'antenne �ottante. Des
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mesures avec des états de mer plus élevés sont cependant nécessaires.

Conclusion
Le radar HFSWR est un outil permettant la surveillance de grandes zones maritimes
et la mesure de paramètres océanographiques. Cette thèse a permis de proposer une
solution à l'inconvénient majeur de ces radars, c'est à dire leur résolution limitée en
azimut. Un nouveau concept a été proposé, consistant à mettre les antennes du réseau
de réception sur des bouées en mer.

Cependant, la déformation du réseau génère des perturbations entrainant notam-
ment des remontées de lobes secondaires dans le diagramme de rayonnement. Des
méthodes de correction ont été proposées suivant le type de déformation (vertical ou
horizontal) et elles ont été comparées à des méthodes itératives. Ces méthodes de cor-
rection abaissent de façon signi�cative le niveau de lobes, en temps réel.

Dans un deuxième temps nous avons étudié la robustesse de l'algorithme MUSIC
pour la détection de directions d'arrivée. Une deuxième méthode appelée Weiss Fried-
lander a permis d'améliorer de façon signi�cative les performances de MUSIC.

Pour �nir, une première expérimentation avec une antenne �ottante a été menée.
Ces premiers résultats ont permis de valider le concept d'antenne �ottante pour de
faibles états de mer en obtenant des signaux exploitables dans le cadre d'applications
océanographiques. De plus, même si des mesures avec de plus grands états de mer
doivent être menées, le niveau de perturbations amené par le mouvement de la bouée
reste relativement faibles. Ce résultat ouvre des perspectives dans le cadre de la détec-
tion de cibles.





Ph.D. THESIS
OF THE NATIONAL INSTITUTE OF APPLIED

SCIENCES OF RENNES

Speciality:
ÉLECTRICAL ENGINEERING

Thesis Submitted for the Degree of:
DOCTOR OF PHILOSOPHY

By:
Anthony BOURGES

Feasibility of a surface wave radar on buoys - On the
deformation of the antenna array and realisation of a buoy

Defended:
November, 7th 2008

Jury:

Reviewers:
Pr. Jean-Yves DAUVIGNAC University of Nice Sophia Antipolis
Pr. Marc HELIER University Pierre et Marie Curie

Examiners:
Pr. Pierre FLAMENT University of Hawaii
Dr. Randy HAUPT Pennsylvania State University
Pr. Raphael GILLARD, co-supervisor INSA of Rennes
Dr. Régis GUINVARC'H, co-supervisor SONDRA/Supelec
Pr. Bernard UGUEN, Thesis Director University of de Rennes 1





Contents

Remerciements 1

Contents 1

1 High Frequency Surface Wave Radar (HFSWR) 9
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2 High Frequency waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3 High Frequency Surface Wave Radar (HFSWR) . . . . . . . . . . . . . . 10

1.3.1 Antenna system . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3.2 Dimensions of a HFSWR . . . . . . . . . . . . . . . . . . . . . . 11

1.4 HFSWR Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.4.1 Range Doppler representation . . . . . . . . . . . . . . . . . . . . 14
1.4.2 Sea surface and Bragg lines . . . . . . . . . . . . . . . . . . . . . 15
1.4.3 Calculation of oceanographic parameters . . . . . . . . . . . . . . 18

1.4.3.1 Wind direction . . . . . . . . . . . . . . . . . . . . . . . 18
1.4.3.2 Wave heights . . . . . . . . . . . . . . . . . . . . . . . . 18
1.4.3.3 Surface currents . . . . . . . . . . . . . . . . . . . . . . 19
1.4.3.4 Validity of empirical formula . . . . . . . . . . . . . . . 21

1.4.4 Monitoring application and target detection . . . . . . . . . . . . 21
1.5 Design of the receiving array . . . . . . . . . . . . . . . . . . . . . . . . 21

1.5.1 Phased array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.5.2 Radiated �eld by a translated antenna . . . . . . . . . . . . . . . 22
1.5.3 Array pattern multiplication . . . . . . . . . . . . . . . . . . . . . 22
1.5.4 Array pattern design: the Shelkuno�'s representation . . . . . . . 23

1.5.4.1 The associated polynomial of the array factor . . . . . . 23
1.5.5 Shelkuno�'s Zero Placement Method for a regular array . . . . . 24

1.5.5.1 Choice of the SLL . . . . . . . . . . . . . . . . . . . . . 25
1.5.5.2 Beam steering . . . . . . . . . . . . . . . . . . . . . . . 26

1.5.6 Choice of the desired receiving array . . . . . . . . . . . . . . . . 28
1.5.6.1 Elementary antenna: the dipole . . . . . . . . . . . . . 30
1.5.6.2 Array of λ/2 dipoles . . . . . . . . . . . . . . . . . . . . 30

1.6 Introduction to the �oating antennas concept . . . . . . . . . . . . . . . 32
1.6.1 Classical problem of HFSWR deployment . . . . . . . . . . . . . 32

1



2 Contents

1.6.2 Floating antennas . . . . . . . . . . . . . . . . . . . . . . . . . . 32
1.7 Conclusion of Chapter 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2 Modelling of the sea and of the buoy motion 35
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.2 Sea surface modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.2.1 De�nition of gravity and capillarity wave . . . . . . . . . . . . . . 36
2.2.2 Sea surface generation . . . . . . . . . . . . . . . . . . . . . . . . 36

2.2.2.1 Dispersion relation . . . . . . . . . . . . . . . . . . . . 37
2.2.2.2 Introduction of the Sea Spectrum . . . . . . . . . . . . 38

2.2.3 Examples of sea surfaces elevations . . . . . . . . . . . . . . . . . 41
2.3 Buoy movement modelling . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.3.1 De�nition of the system . . . . . . . . . . . . . . . . . . . . . . . 44
2.3.1.1 Introduction of the undeformed array . . . . . . . . . . 44
2.3.1.2 De�nition of the �oating system: the deformed array . . 45

2.3.2 Modelling of buoys motions . . . . . . . . . . . . . . . . . . . . . 46
2.3.3 Buoys displacements . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.3.4 Maximum displacement of buoy motion . . . . . . . . . . . . . . 48

2.4 Conclusion of Chapter 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3 Correction methods 51
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.2 Study of coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.2.1 Introduction of the coupling . . . . . . . . . . . . . . . . . . . . . 52
3.2.2 Mutual Impedance of two dipoles . . . . . . . . . . . . . . . . . . 52
3.2.3 Coupling in an N -antenna array . . . . . . . . . . . . . . . . . . 54
3.2.4 Currents with vertical deformation in the array . . . . . . . . . . 55
3.2.5 Currents with horizontal deformation in the array . . . . . . . . . 56
3.2.6 Conclusion on coupling e�ect in the deformed array . . . . . . . 57
3.2.7 Coupling e�ect on the radiation pattern . . . . . . . . . . . . . . 57

3.3 Receiving array with a vertical deformation . . . . . . . . . . . . . . . . 59
3.3.1 Robustness of the vertical correction method . . . . . . . . . . . 61

3.4 Horizontal deformations of the receiving array . . . . . . . . . . . . . . . 63
3.4.1 Compensation method for longitudinal movement . . . . . . . . . 63
3.4.2 Methods for joint longitudinal and transverse movements . . . . 64
3.4.3 Results for the horizontal correction method . . . . . . . . . . . . 65
3.4.4 Analysis of the performance of the horizontal correction . . . . . 69
3.4.5 Robustness of the horizontal correction method . . . . . . . . . . 71

3.5 Comparison with iterative methods . . . . . . . . . . . . . . . . . . . . . 73
3.5.1 Genetic algorithm method . . . . . . . . . . . . . . . . . . . . . . 74

3.5.1.1 GA modi�cations . . . . . . . . . . . . . . . . . . . . . 74
3.5.1.2 GA results . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.5.2 Particle Swarm Optimization method . . . . . . . . . . . . . . . 78
3.5.2.1 PSO �tness function and evaluation of population . . . 78



Contents 3

3.5.2.2 Results of PSO correction methods . . . . . . . . . . . . 78
3.5.2.3 Conclusion of PSO methods . . . . . . . . . . . . . . . . 81

3.6 Conclusion of Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4 Direction of Arrival 83
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.2 Mathematical formulation of the problem . . . . . . . . . . . . . . . . . 83
4.3 Presentation of MUSIC Algorithm . . . . . . . . . . . . . . . . . . . . . 86

4.3.1 Preliminary remarks . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.3.2 Measured covariance matrix . . . . . . . . . . . . . . . . . . . . . 87
4.3.3 Determination of the number of incident waves . . . . . . . . . . 88
4.3.4 Direction of Arrivals: calculation of MUSIC Spectrum . . . . . . 90

4.4 Improvement of MUSIC: Weiss Friedlander method . . . . . . . . . . . . 92
4.4.1 Calibration using a multidimensional �tness function . . . . . . . 93
4.4.2 Linear approximation . . . . . . . . . . . . . . . . . . . . . . . . 94

4.5 Hypothesis for simulations of direction of arrival . . . . . . . . . . . . . 95
4.6 Programming of the algorithms . . . . . . . . . . . . . . . . . . . . . . . 96

4.6.1 MUSIC programming . . . . . . . . . . . . . . . . . . . . . . . . 97
4.6.2 Weiss-Friedlander programming . . . . . . . . . . . . . . . . . . . 98

4.7 Simulations and results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.7.1 Performances of the MUSIC algorithm . . . . . . . . . . . . . . . 98

4.7.1.1 Impact on the size of windows on the detection of targets 99
4.7.1.2 Impact of the number of targets to detect . . . . . . . . 99
4.7.1.3 Detection of close targets . . . . . . . . . . . . . . . . . 100

4.7.2 Improvements with Weiss-Friedlander method . . . . . . . . . . . 100
4.7.3 General Results of MUSIC and Weiss-Friedlander method . . . . 101

4.8 Conclusion of Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5 Realization and measurement of a sea �oating antenna 109
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.2 Simulation of the spreading of the Bragg lines with a �oating antenna . 109
5.3 Introduction to the experimentations . . . . . . . . . . . . . . . . . . . . 111
5.4 WERA description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.4.1 Geometry of a WERA radar . . . . . . . . . . . . . . . . . . . . . 112
5.4.2 Shelter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
5.4.3 Signal Processing of WERA . . . . . . . . . . . . . . . . . . . . . 114

5.5 Building the �oating antenna . . . . . . . . . . . . . . . . . . . . . . . . 115
5.5.1 Choice of the antenna . . . . . . . . . . . . . . . . . . . . . . . . 115
5.5.2 The �oating antenna . . . . . . . . . . . . . . . . . . . . . . . . . 116
5.5.3 The cable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
5.5.4 The GPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.6 First measurements results . . . . . . . . . . . . . . . . . . . . . . . . . . 118
5.6.1 Positions of the �oating antenna . . . . . . . . . . . . . . . . . . 118
5.6.2 Radar measurements by the �oating antenna . . . . . . . . . . . 121



4 Contents

5.7 Conclusion of Chapter 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

Bibliography 131
����������



Introduction

The concept of the Economic Exclusive Zone (EEZ) �nds its legal basis in the United
Nations Convention on the Law of the Sea [4]. The states may establish an exclusive
economic zone with a maximum of 200 nautical miles (370 km) from their coasts. In this
area, the State has sovereign rights as regards from the exploration, the exploitation, the
conservation and the management of natural or biological resources. The rights extend
from the waters above the seabed and the seabed in the subsoil. Moreover, the rights
apply to the exploration and exploitation of the zone for economic purposes, such as
the production of energy from water, sea currents and winds. Finally, the State has full
jurisdiction regarding the establishment and the use of arti�cial islands, installations
and structures for marine scienti�c research, protection and preservation of the marine
environment.

Thus, the monitoring of the EEZ is an economic, civil and military issue. The im-
portance of the investment of the scienti�c activity in Singapore, France and abroad
on this area is considerable [26]. France has, through its departments and overseas
territories, the second world EEZ, over ten millions km2. While Singapore has a much
smaller EEZ, it is one of the world's most busy ports and is situated at the Malacca
straits southern end which is of the most important shipping lanes in the world. There-
fore, although their situations can be described in di�erent ways, both countries have
to face the same issue: how to maintain the security and safety of goods, people and
the maritime environment?

In terms of sensors requirements, it means a sensor able to monitor a large zone,
permanently with a good resolution. Whatever the type of sensors, it can be either
ground based or based on a satellite or airborne.

Satellites If the satellite is a geosynchronous one, it will cover a wide zone permanently.
However, it also means it will be at 35786 km from the Earth, therefore a �ne
resolution cannot be obtained. On the contrary, considering a satellite in Low
Earth Orbit, it will not permanently cover the area but will have a typical revisit
period of 90 min.

Airborne Obviously, an airborne sensor is not able to permanently cover a given area.

Ground based A ground based sensor can easily be a permanent solution. However,
for most of them, their wave propagation does not follow the earth curvature and
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6 Introduction

they cannot detect an object beyond the horizon (cf. Fig. 21), limiting the range
of the monitoring area.

Figure 21: Coverage of various type of radars.

However, not all the ground-based radar are horizon limited. For instance, X-band
radars can see over the horizon thanks to a ducting e�ect, but only in some particular
circumstances. More interesting for the monitoring of the EEZ, High Frequency (HF,
3-30 MHz) radars have the capacity to receive target echoes over much longer distances
than microwave radars. The most common type of HF radar operates in the skywave
mode, which receives radar echoes through re�ection from the ionosphere. ONERA
proposes for example the Nostradamus project which is a skywave radar located in
Dreux.

HF radar can also operate in the surface wave mode, which provides coverage in
the order of a few hundred kilometers, roughly the size of the EEZ. Signals propagate
e�ciently in the surface wave mode only at vertical polarization and require a conducting
surface along the signal path. This makes the HFSWR practical at coastal installations
where the ocean surface serves as the conducting surface.

The drawback of these HFSWR is a lack of resolution. A good azimuthal resolution
means a large receiving array. At HF frequencies, this leads to a very large receiving
array, several hundred meters. Furthermore, this receiving array needs to be as close to
the sea surface as possible to correctly excite the surface wave mode. Both requirements
are extremely hard to full�ll at the same time if the HFSWR is located on the coast.

The idea is then to put the radar where there is plenty of room: directly on the sea
surface. Each antenna of the HFSWR is placed on a separate �oating platform, a buoy
for instance, as the array spacing is of the order of 10 m. Each antenna has then its
own movement. The array is conformed to the sea surface and therefore undergoes a
continuous deformation.

Considering the potential valuable applications of these HFSWR on buoys, along
with their originality, Singapore and France have decided to launch together a research
program. This has been done within the framework of SONDRA, a joint research labo-
ratory between Singapore and France, made of four partners, Supelec and ONERA from
France and the National University of Singapore and the Defence Science and Technol-
ogy Agency from Singapore. A PhD thesis funded by DSTA has then be started which
has mainly aimed at investigating the feasibility of this concept.

This work is then twofold. A �rst part aims at investigating the e�ect of the sea
surface on the radiation pattern of the array; it includes the analysis of the sea surface
movements and of their e�ects on the �oating antennas, along with the developpement
of a correction technique to compensate for these sea surface movements. The second
part addresses the issue of the modulation of the signal. Most of this work is focussed
on the �rst part, while the second part is done through the realization of a �oating
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antenna and its measurement.

Chapter 1 describes the HFSWR. Its basic principle is introduced, its components
are detailed with a particular emphasis on the phased array. The speci�c processing
of the signal is then explained. Some oceanographic notions are also given in order to
understand the importance of the Bragg lines.

Chapter 2 introduces the modelling of the sea surface and of the movements of
the buoys. It starts by explaining the generation of a wave. It then describes how
to generate a 3 dimensional modelling of a sea surface, based on a sea spectrum and
on a spreading function. The di�erent sea states are presented. In addition, the time
evolution of these sea surfaces is described. Examples of sea surfaces are then given
to illustrate the mechanisms. These surfaces are then used in a simple model we have
made to study the displacements of the buoys.

Chapter 3 investigates the receiving array with deformations. The various sources
of disturbances are studied depending on the type of displacement i.e. the vertical
(along z axis) and the horizontal movements (along x and y axis). These displacements
introduce deformations in the radiation pattern of the �oating receiving array. Correc-
tion methods are proposed, that consist in modifying the excitation coe�cients of the
array. At the end of the chapter, these corrections methods are compared with iterative
methods.

Chapter 4 proposes a new approach of the �oating antennas problem focusing on
receiving signal to obtain information about targets directions of arrival. The �rst part
provides a presentation of MUSIC and Weiss Friedlander algorithms which developes
in that purpose by extracting properties of the correlation matrix of received signals
in the receiving array. The second part tests their robustness considering positioning
errors in the receiving array.

Chapter 5 describes a realization and the �rst measurements of a �oating antenna.
This experimentation permits to introduce a second issue generated by the movements
of �oating antennas: the modulation of the received signal. In fact, the displacement of
every elementary buoy, independently of the array deformation generates some modu-
lations introducing a spreading of the Bragg lines.
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Chapter 1

High Frequency Surface Wave
Radar (HFSWR)

1.1 Introduction
High Frequency Surface Wave Radars (HFSWRs) use a particular mode of propagation,
the surface wave mode that propagates at the interface between the air and the sea.
It is therefore possible to produce systems with ranges of a few hundred kilometers
[33][7][25]. The surface wave spreading along the interface between the air and the sea,
the signal received by the radar contains information on the properties of this surface
and on various objects disseminated over the sea surface [36]. This information can be
used for various applications, ranging from oceanography to target detection. To collect
as much information as possible, a particular emphasis is put on the receiving array.
The challenge addressed by this thesis is to put on buoys the receiving array.

The �rst part of this chapter gives details on both HF surface waves and on the
HFSWR. Then, the second part describes the two main applications: oceanographic
monitoring and target detection for military applications, with a particular emphasis on
the oceanographic ones. The third part provides some theoretical formulation of array
theory which will be helpful for setting the correction algorithms. Finally, we present
our alternative solution to the classical coastal receiving array of HFSWR, along with
its interests and speci�city.

1.2 High Frequency waves
The ground is characterized by its conductivity σ and its permittivity ε. The complex
permittivity is:

ε0εc = ε− j
σ

ω
(1.1)

where εc is the relative complex permittivity, ε0 the permittivity of the vacuum, ω the
angular frequency and σ the ground conductivity.
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For the HF waves, the displacement current is smaller to the conductivity current
(ε << σ

ω ), the ground is a conductor but with some losses which can be taken into
account as follows [35]:

α =
2π
c0

√
σf

4πε0
(1.2)

where α is the attenuation in Neper per meter (1 Np = 8.6 dB), c0 the speed of the
light in the vacuum and f the operating frequency.

At the interface between the atmosphere and the ground, the discontinuity of the
electric induction generates a density of charges on the ground surface. This density of
charge creates a weak deviation of waves which has then a parallel propagation to the
interface. This induction phenomena allows the waves to propagate at the interface.
The waves are called surface waves and they follow the Earth curvature.

For the particular case of the sea, the surface is a good conductor and the surface
waves spread easily in the HF band.

1.3 High Frequency Surface Wave Radar (HFSWR)
High Frequency (HF) radars are referred to as over-the-horizon radars because of their
capacity to receive target echoes over much longer distances than microwave radars,
which are restricted to distances de�ned by the line-of-sight or the horizon. The most
common type of HF radar operates in the sky wave mode, which receives radar echoes
through re�ection from the ionosphere. The ONERA proposes for example the Nos-
tradamus radar which is a skywave radar localized in Dreux.

HF radar can also operate in the surface wave mode, which provides coverage of
the order of several hundred kilometers. Signals propagate e�ciently in the surface
wave mode only for vertical polarization and we have seen that it requires a conducting
surface along the signal path. This makes the HFSWR practical at coastal installations
where the ocean surface serves as the conducting surface (cf Fig. 1.1).

1.3.1 Antenna system
HFSWR generates electromagnetic waves radiated toward the sea. One part of the
transmitting signal is backscattered by the sea surface. This signal is recovered thanks
to a receiving antenna system. In fact, HFSWR measures the spatial distribution of
the re�ectivity of the waves on the sea. HFSWR are usually quasi monostatic radars,
it means that the transmitting and the receiving antennas are separated, but only by a
short distance in terms of wavelength (cf Fig. 1.1).

Generally speaking, two modes of transmission are possible:
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Figure 1.1: HFSWR geometry

� The �rst mode uses pulsed waves, they are called "pulsed radar". The radar
transmits a pulse during a time Tr and waits for the return before the transmission
of another one,

� The second one uses a continuous wave, they are called "continuous wave mode".
The required de-coupling between transmitter and receiver has to be achieved by
means of using a transmitter beamforming.

Most of the HF radars used the pulsed mode, except the WERA radar we have used
for our measurements. The last chapter will go into more details on the WERA.

The HFSWR receiving antenna is in many cases a phased antenna array [33]. The
receiving array of a "pulsed radar" is switched o� during the transmission of the pulses.
For the "continuous mode" radar, the receiver is continuously on in order to pick up
signals. The signal processing is carried out in parallel to transfer all antennas amplitude
and phase information to the digital processor units [15]. Its basis will be explained in
section 1.4.1.

1.3.2 Dimensions of a HFSWR
The capabilities of a radar, such as target detection or the measurement of oceano-
graphic parameters, depends on its resolution cell. For a HFSWR, the area to be
observed is de�ned in the (x-O-y) plane (cf Fig. 1.2), i.e. on the sea surface. In terms
of azimuth, the radar angular sector of observation is de�ned by ±φmax. So, the receiv-
ing array needs to scan all this angular sector and has to be designed for that purpose.

The observation area is also divided into radar cells, �xing its resolution capabilities.
The resolution cell is de�ned as the surface that contributes to the echo received by the
radar [29]. The cell size is constrained by range and angular resolutions.

The range resolution δR is the capacity to separate two echoes of a radar in distance:

δR =
cTr
2

(1.3)
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Figure 1.2: Observation area of a radar

with c the celerity. This formula applies only in the case of a pulsed radar. The larger
Tr, the smaller the range resolution. The range resolution of a radar in "continuous
wave mode" is:

δR =
c

2B
(1.4)

where B is the frequency bandwidth of the radar.

In the same way, the angular resolution δφ is de�ned as the minimum angular
separation at which two identical targets can be separated when at the same range
R. Fig. 1.3 illustrates the relation between the angular resolution and the equivalent
resolution in distance. It is called the cross range resolution and it permits to denote
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Figure 1.3: Cross range resolution.

the resolution in the direction orthogonal to range.

∆CR = 2R sin
φ3dB

2
(1.5)

where φ3dB is the -3 dB beamwidth of the main beam. It corresponds to the angular
range for which the radiated �eld is larger than 1√

2
Fmax, Fmax being the maximum

value of the �eld.

The cross range resolution increases linearly with range as illustrated in Fig. 1.2,
whereas the range resolution is constant.

To conclude, the radar capabilities are �xed by the cell resolution which means the
range and the angular resolution. The range resolution can be improved by modifying
the transmitting signal, this point will not be discussed in the thesis. The angular reso-
lution is impressed by the half-power aperture of the radiation pattern of the receiving
array. It means that the angular performance depends on the geometry of the receiving
array. The larger the array, the better the angular resolution. This point is discussed
in section 1.5.

1.4 HFSWR Applications
This section is focused on the di�erent applications of HFSWR. We distinguish two main
applications: the measurements of oceanographic parameters and the target detection.
The surface wave spreads along the interface between the air and the sea, therefore the
signal received by the radar contains information about this surface [36]. One possible
application is thus to �nd the oceanographic parameters of the sea surface (wind speed,
wind direction, current ...) from the received signal [9] [34]. In this application, the
signal of interest is the signal from the sea surface, all the other signals (ship echoes
from instance) are the noise. Of course, the opposite problem is also of interest, i.e. the
presence of targets in the received signal, this time, the signal from the sea is the noise.
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Besides the standard information of a radar, distance and direction of arrival of
a target, and thanks to the frequency band, the HFSWR provides some additional
information with the Doppler shift. A particular signal processing is applied to the
received signals in order to obtain a Range Doppler representation, which is the usual
way of plotting the results.

1.4.1 Range Doppler representation
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Figure 1.4: Process of doppler distance with an HFSWR.

The radar signal processing consists of a range Doppler analysis of the backscat-
tered signals of each antenna of the radar. All the channels are treated in parallel in
the digital processor unit.

A three dimensional dataset is obtained. Each element of this dataset is associated
with:

� The magnitude of the signal,

� The group distance, determined by the correlation between the received signal
and the replica of the transmitted signal,

� The Doppler frequency obtained with a spectral Fourier analysis.
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The processing in range Doppler is illustrated in Fig. 1.4. Practically, a �rst Fourier
transform is applied ('short time' Fourier transform) to realize the correlation between
the emitted signal and the received signal. Then, a second Fourier transform is per-
formed from pulse to pulse ('long time' Fourier transform) to analyse for the Doppler
shift.

The choice of the transmitting and receiving parameters (transmitting time, receiv-
ing time, number of chirps) permits to �x the Doppler frequency resolution and the
number of range cells.

Hz

km

−1.5 −1 −0.5 0 0.5 1 1.5
0

20

40

60

80

100

120

140

160

85

90

95

100

105

110

115

120

Figure 1.5: Example of a range Doppler plot.

Fig. 1.5 introduces an image in range Doppler. It is a characteristic response of the
sea. This example shows two lines at two Doppler frequencies at ±fb = 0.36 Hz and
one at 0 Hz. The �rst two lines are called Bragg lines and the last one is a DC coupling
or the echo of the land. The next section is an explanation of the origin of these lines.

1.4.2 Sea surface and Bragg lines
The sea surface is composed of many waves spreading in all directions, as shown on Fig.
1.6. This system of waves is generated by the wind and the waves of gravity. Further
details are given in Chapter 2.

The interactions between the surface wave and the sea surface can be modeled by
the mechanism of the resonant Bragg scattering, as explained in the next section.

First order of Bragg lines The radar wave arrives with an incident angle α on the
crests of a train of waves with a wavelength L (see Fig. 1.7). A portion of the energy is
di�racted in the direction of the transmitter. If the wavelength L is about half that of
the radar, the di�racted contributions adds in phase (Bragg resonance e�ect). A strong
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Figure 1.6: Decomposition of a sea surface

backward signal is then produced as shown on Fig. 1.5. The condition of the resonance
is given by:

L cosα =
λ

2
(1.6)

where L is the wavelength of the sea wave, α is the incident angle of the wave and
λ = c0/f is the electromagnetic wavelength of the radar with c0 the celerity of light.
In the case of a HFSWR application, α is almost zero. So, Eq. 1.6 becomes L = λ/2.

Figure 1.7: Interaction between the wave and the sea surface

The speed of the sea wave is given by[22]:

V =

√
gL

2π
(1.7)
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where g is the gravity constant.
When Eq. 1.6 is satis�ed:

V =
√
gc0
4πf

(1.8)

It corresponds to a Doppler shift fb that is given by:

fb =
2V
c0
fMHz = 0.102

√
fMHz (1.9)

where fMHz is the frequency in MHz and fb is expressed in Hz.
For HF frequencies, there are always two trains of waves: a train of sea waves which

goes from the radar to the open sea and an inverse train of waves. So, there are two
constructive interferences at +fb and −fb. These are the Bragg lines for the �rst order.

Second order of Bragg lines We have seen in the previous paragraph that only two
trains of waves comply with the condition of resonance, which result in two dominant
peaks. However, in the system of waves, second and higher order scattering exists and
results in other lesser peaks and a continuum. It is generally accepted that the second
order covers [−2fb; +2fb], [32][12].

Echo of the land We have always considered the radiation of the radar towards the
sea. But for most of the coastal HFSWR, there is also a symmetric backward radiation,
towards the land. This radiation results in a backscattered signal with a zero Doppler
shift (see Fig. 1.5). Other causes may exist, such as the presence of islands.
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Figure 1.8: Doppler spectrum of the sea.
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Doppler spectrum of the sea Fig. 1.8 is a cut of Fig. 1.5. It summarizes the
elements previously described, a zero Doppler component (echo of the land), two com-
ponents at ±fb (the �rst order of Bragg) and a continuum of components between
[−2fb; +2fb] with lower magnitudes.
All these elements are due to the sea surface. Therefore, the information on the heights
of the waves, the speed of the surface currents, the speed and the direction of the wind
can be extracted from this Doppler spectrum of the sea. This is explained in the next
section.

1.4.3 Oceanographic applications: calculation of oceanographic pa-
rameters

HFSWR is the only sensor that can measure temporal and spatial ocean properties
simultaneously over thousands of square kilometers with a good resolution. It is nor-
mally deployed as a pair of land stations with overlapping coverage, but it can operate
also from a single land station, with reduced capabilities. Oceanographic measurements
include surface current, vertical current shear, directional wave height spectra and wind
direction. These aspects are introduced in the following section.

One important point to note is that the calculation of the meteorological parameters
from the sea spectrum is realized from empirical formulas [22] and [24].

1.4.3.1 Wind direction
The wind direction is obtained from the relationship which exists between the amplitude
of the �rst order of Bragg, the direction of observation of the radar and the wind
direction. This is represented under the shape of a cardioid (Fig. 1.9).

φwind = ±90
(

∆S − 24
24

)
(1.10)

where φwind is angle between the wind direction and the radar look direction in degree
and ∆S is the ratio in dB between the two Bragg lines.

Using Eq. 1.10, it is possible to obtain the wind direction over the area covered by
the radar, as illustrated in Fig. 1.9.

1.4.3.2 Wave heights
The wave heights are obtained from the relationship between the energy of the �rst
order (0.14 Hz around the Bragg frequencies in the �rst order) and the second order (0
Hz to fb):

k0h = 0.8r0.6 (1.11)
where k0 is the wavenumber of the wave, h is the quadratic mean of the wave height
and r the energy ratio in dB.
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Figure 1.9: Cardioids of wind with the corresponding Doppler sea spectrum

The signi�cant wave height H1/3, used in meteorology, is obtained by:

H1/3 = 2.83h (1.12)

A more precise de�nition of H1/3 related to sea state is given in Chapter 2 (cf Eq.
2.9).

1.4.3.3 Surface currents

The radial velocity of surface currents is obtained using the gap between the theoretical
positions of the �rst Bragg line (Eq. 1.13) and its observed position:

Vr =
c0∆f
2f

(1.13)

where Vr is the radial speed of the surface current, f is the work frequency and ∆f is
the shift between the emitted frequency and the measured frequency. Fig. 1.10 show a
map of the surface currents o� the shore of Brittany, measured in real time by a pair
of HFSWR (red stars on the �gure). With only one radar, the angle can be found, but
modulo 180◦. The up to date �gure is available to the navigators, or any interested
persons, on the internet [5].
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Figure 1.10: Surface currents in the area of Brittany coasts
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1.4.3.4 Validity of empirical formula

As outlined by C. Kerbiriou [22], formulas from Eq. 1.10 to Eq. 1.13 are empirical and
the validity of the results may be questionable. The e�ect of integration of the beam on
the radar cell (50 km by 5 km in the case of C. Kerbiriou) is not known. It is necessary
to confront regularly, or even permanently, calculated data and data measured on the
ground by buoys or ships.

1.4.4 Monitoring application and target detection
The pace of modern military operations and the over-the-horizon range capability of
many weapons systems impose heavy demands on real-time surveillance and intelli-
gence support. For operations in the littoral zone, there is a clear requirement for a
relocatable, shore-based sensor which can provide reliable all-weather detection of small
surface and aerial targets of interest out to ranges in excess of 200 kilometers from the
coast. HFSWR may well provide the most cost-e�ective solution to this requirement,
given the results of recent trials of experimental land-based systems developed in USA,
in France, in Australia and in Canada [7] [6].

Contrary to the oceanographic applications, the presence of the sea spectrum is
here a problem. The magnitude of the �rst order Bragg line is actually larger than the
response of a target, even than the response of large ships. However, the Bragg peak
for coastal radar is quite narrow. Thus, the usual way to circumvent this problem is
to change the emitting frequency because it will change the position of the Bragg line.
This undesirable element is called sea clutter of the sea spectrum.

To give a precise idea, consider Fig. 1.5 and a �shing boat (in other words a pirate
ship) approaching a yacht. At 10 MHz, the Doppler shift of the �shing boat approach-
ing at 20 km/h is roughly 0.4 Hz. It will thus be totally hidden by the Bragg line.

In addition to this sea clutter, we can add the disturbances caused by the ionosphere.
It is called the ionospheric clutter. It is introduced in the measured signal because of
the directivity of the antennas [21] and [20].

1.5 Design of the receiving array
This section discuss the design of the receiving array of an HFSWR. It is focused on the
choice of a phased array. The Shelkuno�'s representation is also proposed to highlight
some aspects of the discussion on the zero placement method.

1.5.1 Phased array
The antenna plays a major role in determining the angular resolution of the radar [29].
A wide variety of antenna types can be used, however the phased antenna array is most
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of frequently adapted in the HFSWR context.

A phased array is obtained by associating several elementary antennas and by con-
trolling the phase of their excitation coe�cients. It provides an e�cient way of steering
the main beam in a desired direction. This section will brie�y summarize the basics of
phased array. The �rst part express the radiated �eld by a translated antenna. The law
which follows computes the radiated �eld of phased arrays, introducing the concept of
array factor.

1.5.2 Radiated �eld by a translated antenna
This section permits to determine the radiated �eld of a translated element. So, we
consider antenna 1 which is localized at ~r = [x, y, z] with its associated radiated �eld
intensity F (~k) and a translated antenna, named antenna 2 which is localized at ~r − ~d
with its associated radiated �eld intensity Fd(~k) [13]:

Fd(~k) = ej
~k.~dF (~k) (1.14)

where k is the wavenumber, k = 2π
λ and λ the wavelength, ~k = k.k̂, k̂ describing the

direction of the incident wave.

The phased array being the sum of the translated antennas, Eq. 1.14 permits to
compute the array �eld. This is the topic of the next section.

1.5.3 Array pattern multiplication
An array of N identical antennas is now considered. Antenna n is located at ~r − ~dn.
Relation 1.14 can be used for the calculation of the total radiated �eld intensity Ftot(~k)
of all the N antennas:

Ftot(~k) = A(~k)F (~k) (1.15)

with:

A(~k) = i1e
j~k. ~d1 + i2e

j~k. ~d2 + · · ·+ iNe
j~k. ~dN (1.16)

with in which is an excitation coe�cient attached to antenna n (in ∈ C). A(~k) is
called the array factor.

In the following, we restrict our analysis to linear antenna arrays. Linear antenna
arrays are a single convenient when the radiation pattern has to be optimized in only
one plane. This is the case for HFSWR where the observation plane coincides with the
sea surface (xOy). We assume that the array elements are distributed along the x axis.
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In the case of a uniformly spaced one dimensional array, the N antennas positions
are given by the coordinates (xn, 0, 0) with xn = (n − 1)d where d is the constant
distance between antennas. The array factor will be:

A(θ, φ) =
N∑

n=1

ine
j(n−1)kd cosφ sin θ (1.17)

or,

A(ψ) =
N∑

n=1

ine
j(n−1)ψ (1.18)

where

ψ = kd cosφ sin θ (1.19)

In the observation plane, θ = 90◦. Eq. 1.17 reduces to:

A(φ) =
N∑

n=1

ine
jk(n−1)d cosφ (1.20)

φ3dB is usually expressed as [29]:

φ3dB ≈ 0.886
λ

l
= 0.886

λ

Nd
(1.21)

where l is the array length.

So, the beamwidth can be controlled by the number of elements in the array and
the interelement spacing. It results that a trade o� has usually to be found when
designing the array. It is illustrated by a unit circle technique due to Shelkuno�. This
representation is given in the following section.

1.5.4 Array pattern design: the Shelkuno�'s representation
The representation developed in this section is called Shelkuno�'s representation and is
explained in details in [30].

For a better understanding of the Shelkuno�'s representation, it is important to
de�ne the concept of associated polynomial of an array factor.

1.5.4.1 The associated polynomial of the array factor
In the Shelkuno�'s representation, we consider the positions of the nulls of the radia-
tion pattern. It means we look for the azimuth angle φ for which the array factor is zero.

Using Eq. 1.18 and applying a simple transformation of variable z = ejψ, we have:
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A(z) =
N∑

n=1

inz
n−1 (1.22)

A(z) is called the associated polynomial of the array factor.

Searching for the nulls in the array factor is equivalent to searching for the roots (or
the zeros) of the associated polynomial A(z) de�ned in Eq. 1.22.

The next section establishes some common notations using the Shelkuno� represen-
tation.

1.5.5 Shelkuno�'s Zero Placement Method for a regular array
As we have seen in the previous section, the array factor of an N-element array can be
written as a polynomial of degree N − 1 (Eq. 1.22):

A(z) =
N∑

n=1

inz
n−1 = (z − z1)(z − z2)...(z − zN−1)aN (1.23)

The roots of the obtained polynomial can be plotted in the complex plane. The
analysis and the synthesis of a regular array can be tied to the study of the properties
of the polynomial, a distinct asset for the antenna designer. To develop this approach,
we can observe that when φ varies in real space from 0 to π, ψ varies from ψb = −kd
to ψa = kd. We can also observe that φ traces out a path along the unit circle in the
complex plane as illustrated in Fig.1.11.

Im 

Re 

ψ
a
 

ψ
b
 

ψ
n
 

z
n
 = ej ψ

n 

Figure 1.11: Visible region on the unit circle

For a regular uniform array, the magnitude of the roots is always equal to 1, thus
they are all placed on the unit circle. If the roots of the polynomial are placed on the
unit circle then they de�ne nulls in the radiation pattern. Alternatively, if all the roots
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zn are placed o� the unit circle, a radiation pattern devoid of nulls will be produced.

As we will see later, this situation can be achieved when the array is not regular
anymore. An array on �oating buoys belongs to this category and will be studied in
Chapter 3.

We now de�ne the visible region as the overall range of variation of ψ. It corresponds
to the extension between ψb and ψa on the unit circle in Fig. 1.11.

− kd ≤ ψ ≤ kd (1.24)
As it can be seen, it depends on the interelement spacing. Three cases are distin-

guished:

� if d < λ/2, the visible region is a reduced portion of the unit circle.

� if d = λ/2, the visible region exactly coincides with the unit circle.

� if d > λ/2, the visible region is covered by doing more than one turn on the unit
circle. This can give rise to grating lobes or fringes, which are main beam lobes
in directions other than the desired one [23].

These cases are highlighted in three examples of uniform 10-element arrays repre-
sented in Fig. 1.12. Three di�erent spacing were chosen d = λ/4, d = λ/2 and d = λ.
The zeros positions are highlighted with the circle markers. The solid line corresponds
to the visible region on the unit circle.

For d = λ/4, only four zeros are on the visible region of the unit circle, this is why
there are only four nulls in the array factor. For d = λ/2, all the zeros are in the visible
region and there is the equivalent number of nulls in the factor array. For d = λ, the
visible region goes twice on the unit circle, this is why the number of nulls is doubled.
Grating lobes also appear at φ = 0◦ and φ = 180◦.

1.5.5.1 Choice of the SLL: comparison between the uniform repartition and
the Tchebyche� repartition

In the examples given in Fig. 1.12, an array with uniform weights and spacing has been
chosen. It leads to a uniform spacing of zeros on the unit circle. The regular positions
of nulls in the radiation pattern generate a sidelobe level equal to -13.4 dB (Fig. 1.13
for an array of 10 antennas width d = λ/2.

Another approach is to consider a new representation of the zeros on the unit circle
to optimize the sidelobe level of the radiation pattern. This is the case when using
Tchebyche� weights [23] instead of uniform. They are computed to obtain a constant
sidelobe level.
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Figure 1.12: Array factor and its associated unit circle of 10-element uniform array.

As can be seen in the Shelkuno� plot (cf Fig. 1.14), this is achieved by modifying
the positions of the zeros: the closest to the main beam are moved apart while the
distant ones get closer.

1.5.5.2 Beam steering

As explained in section 1.3.2 beam steering is required in order to be able to scan over
the desired observation range (from 65◦ to 115◦ assuming that the initial radiation is
broadside φ = 90◦). This can be achieved without rotating the array, only by modifying
the excitation coe�cients of the di�erent elements. Typically, it can be shown that a
linear phase distribution in = i1e

jnα results in a beam which is moved from broadside
φd = π/2 to φ = arccos α

kd .

Fig. 1.15 represents an array factor and its associated steered array factor. The
roots of the associated polynomial for both array factors are represented in Fig. 1.16.

We can see that a φd translation of the main beam of the array factor is equivalent
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Figure 1.13: Radiation pattern and Shelkuno�'s unit circle representation

to a rotation of the roots of the associated polynomial on the unit circle. The relation
between φ and ψ is not linear. The desired direction of observation moves toward the
largest ψ and the width of the main beam increases when it is steered.

The real beamwidth of a steered array, using small angle from the broadside is given
in [13]:

φ3dB ≈ 0.886
λ

l
cscφd (1.25)

where φ3dB is expressed in radian and csc is the cosecant function.

For example, in Fig. 1.15, the beamwidth φ3dB of the array in φd = 90◦ is equal to
10.1◦ and the beamwidth of the array in φd = 65◦ is equal to 11.8◦.

The motion of the visible region translates with minor modi�cations in the case of
a steered beam. As the angle φd varies over 0◦ ≤ φd ≤ 180◦, the translated ψ′ varies
over the shifted visible region:

− kd(1 + cosφ0) ≤ ψ′ ≤ kd(1− cosφ0) (1.26)
where the total angular width is still equl to 2kd.

To ensure no grating lobes, ψ′ must remain strictly less than 2π, which results in
the following su�cient condition:

d <
λ

1 + |cosφd| (1.27)

This condition is a major issue when considering the trade o� between the required
number of antenna elements (N) and the optimal interelement spacing (d).
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Figure 1.14: Radiation pattern and Shelkuno�'s unit circle representation

1.5.6 Choice of the desired receiving array
The two previous sections have presented basic results about phased arrays. The goal
of this section is to propose a receiving array adapted to the constraints of a HFSWR.

From Eq. 1.5, we can determine the cross range resolution to separate two targets
for a given range. For example, if we want to detect two targets separated of 10 km at
50 km. The required beamwidth φ3dB is 11.5◦.

Eq. 1.25 permits to determine the length of the receiving array l depending on its
beamwidth for a given direction of the main beam. The larger the receiving array, the
higher the directivity. In our example, for φd = 90◦, l = 4.41λ and φd = 65◦, l = 4.87λ.

The length of a regular array is l = Nd. A discussion on the choice of N and d has
to be done. It is a compromise between the grating lobes for a given φd and the global
cost of the installation of the receiving array. To limit the cost, we have to limit the
number of antennas N in the array keeping the same length of the array l, it means: d
has to be as large as possible.

Eq. 1.27 gives a relation between the maximum interelement spacing and the beam
deviation that prevents from the grating lobes. At broadside, φd = 90◦, this reduces
to the earlier condition d < λ. For φd = 65◦ to 115◦, it reduces to d < 0.70λ. So, for
φd ∈ [65◦115◦], d < 0.70λ. In our example, d = λ/2 is chosen as the best compromise,
it corresponds to N > 9.74 antennas. A number of 10 antennas is chosen.

So, to conclude, a uniform and regular array of 10 antennas with an interelement
spacing of λ/2 is chosen as the desired receiving array. This array guarantees a detec-
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tion of two targets at 50 km.

1.5.6.1 Elementary antenna: the dipole

The elementary antenna used in the HFSWR can be a monopole or a dipole which can
be realized at low cost. We can say that a monopole is a half of a dipole where the soil
plays the role of mirror. The dipole is presented in Fig. 1.17 [23].

Figure 1.17: λ/2 Dipole

A representation of the radiation pattern of the dipole is given in Fig. 1.18 (a).
It radiates in all the directions except in the direction of the z axis. It has an omni-
directional radiation pattern in the observation plane (xOy) (cf Fig. 1.18 (b)).

1.5.6.2 Radiated �eld of a uniform array of λ/2 dipoles

We consider a 10-antenna regular and uniform array of λ/2 dipoles with an interelement
spacing equal to λ/2 (cf Fig. 1.19 (a)) with its associated radiated �eld (cf Fig. 1.19
(b)) [23]. In Fig. 1.19 (b), we can observe the main beam in the y direction.
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(a) (b)

Figure 1.18: Radiation pattern of a λ/2 dipole

(a) (b)

Figure 1.19: Phased array of dipoles (a) with its associated radiation pattern (b)
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1.6 Introduction to the �oating antennas concept
1.6.1 Classical problem of HFSWR deployment
Considering the receiving array of the previous section, composed of only 10 elements
with a half wavelength spacing, the array length at 9 MHz is 150m. And practically,
the receiving array of HFSWR are of at least 16 elements to provide a good azimuthal
resolution.

Furthermore, we have seen that to correctly excite the surface wave mode, the radar
needs to be near the sea surface. This point limits the possible locations of the radar
deployment on the littoral. Additional constraints may result from regulations which
usually limit the quantity of HF signals that can be transmitted on the coast.

Figure 1.20: Phase disturbances in a deformed array

In order to circumvent the problem, one solution is to move the receiving array (the
largest part of the antenna system) on buoys on the sea . The receiving array being
directly on the sea, the wave propagation problem is directly solved. Moreover, larger
receiving arrays may be considered as the available space is not limited. Unfortunately,
this alternative technology also generates new problems which will be introduced in the
next section.

1.6.2 Floating antennas
In the proposed solution, the receiving array consists of N antenna elements. Each
of them is supported by a �oating buoy on the sea surface, see Fig. 1.20. The main
concern is the e�ect of the sea motion: it will be responsible for a displacement of the
di�erent buoys and of the attached antennas. As a result, the initial array arrangement
will be modi�ed continuously. This "deformation" of the receiving array and the asso-
ciated perturbation in the radiation pattern will be studied in this thesis. Correction
procedures will also be considered as a means of preserving acceptable performance in
spite of the sea motion.

The second issue is related to the movements of each buoy. Each receiving antenna
follows the movement of the sea surface, its received signal is thus modulated by this
sea surface. This can have some strong e�ects on the Bragg mechanism.
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1.7 Conclusion of Chapter 1
The �rst part of this chapter has presented the HF waves and the High Frequency Sur-
face Wave Radar. A discussion about the design of the receiving array was proposed in
a second part. A uniform and regular array is presented as the desired receiving array
for an HFSWR. Di�erent applications of HFSWR were then presented. Two domains
are distinguished. This �rst one is the measurements of oceanographic parameters. The
second one is the target detection in maritime environment.

In a last part, our alternative solution to the coastal receiving array is introduced.
It consists in putting this array on buoys on the sea. This solution limits the constraints
of radar deployment but raises some new issues related to the movements of the sea
surface. The next chapter will therefore deal with the modelling of the sea surface.
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Chapter 2

Modelling of the sea and of the
buoy motion

2.1 Introduction
We have seen in Chapter 1 that HFSWR proposes good solutions for the measurement of
oceanographic parameters and for the monitoring of the EEZ, thanks to its permanent
coverage of a large zone. However, it requires a large space to have a good azimuthal
resolution. The solution proposed in this thesis is to put the antennas of the receiving
array on independent buoys on the sea surface.

The global radiation pattern of the receiving array is an addition in phase of all the
radiation patterns of all the elements of this array. In our case, each independent buoy
(thus, each elementary antenna) will have its own movement, on the sea surface. This
should a�ect the global radiation pattern. The estimation of the latter e�ect implies a
good knowledge of both the sea surface and the buoys movement on this sea surface.

This chapter is not an exhaustive study of sea surface modelling but it is focused
on the study of few sea surfaces examples. Some necessary notions will �rst be de�ned
and the modelling of the sea surface will then be introduced, along with its evolution
with time. The second part of the chapter is a presentation of the model we have used
to simulate the buoy displacement on a sea surface, such as the one described in the
�rst part.

2.2 Sea surface modeling
In this part, we de�ne a realistic representation of the sea surface elevation. We start
by describing how the wind can generate the waves.

35
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2.2.1 De�nition of gravity and capillarity wave
When the wind starts to blow on a calm sea, waves with short wavelength appear.
The �rst waves are called capillarity waves. After their formation, their amplitude and
their wavelength increase with nonlinear energy transfer and covering. This new kind of
waves is called gravity waves. The gravity waves result from the balance of gravity and
inertia of the waves. If the wind blows long enough, the waves reach a stationary regime.

The smallest capillarity waves have very low amplitudes, thus they do not intervene
in the process of buoys displacements. So, they do not need to be de�ned in our model
of sea surface, only the gravity waves are going to be taken into account.

We can also introduce the concept of fetch. The fetch, cf. Fig. 2.1, is the speci�c
distance from the coast from which the waves of the sea are not disturbed by the coast.

Figure 2.1: Illustration of the fetch

The sea state not only depends on the force of the wind locally but also on the
fetch distance on which the wind acts. We will assume that the in�uence of the coast
is minimum, so all the sea surface representations are realized in the open sea.

The next part will present the details of the modelling of the sea surface.

2.2.2 Sea surface generation
The sea surface is made of a large number of waves which spread in all directions. It
can thus be described as a sum of waves in the space domain and time domain.

All the complex magnitudes of every elementary wave are random Gaussian vari-
ables with a zero mean which are stationary, homogeneous and statistically independent
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during an analysis period T .

ξ(xs, ys, t) is the elevation of the sea surface in the horizontal coordinates of space
(xs, ys) and time t. It can be written as:

ξ (xs, ys, t) =
∞∑

l,m,n=−∞
A

(
~km,n, ωl

)
exp (−j (ωlt− kxx

s − kyy
s)) (2.1)

where:

l, m, n are integer number
~km,n = kx~x+ ky~y
kx = 2π

L m
ky = 2π

L n
~x and ~y are the unit vector of the sea surface plane
A

(
~kn,m, ωl

)
is the Fourier transform of the waves amplitude

The size of the patch of the sea surface is L× L. Eq. 2.1 is actually an inverse 2D
Fourier transform (using xs and ys) of A

(
~k, ωl

)
.

Highlighting the dynamic theory of the �uids (conservation of the mass, continuity
of the surface and balance pressure), Weber and Barrick [38] have shown that, at the
�rst order, the surface is composed of waves which are subject to the �eld of gravity.
These waves of gravity are free, progressive and they do not travel at the same phase
speed. Their dispersion relation is de�ned in the next section.

In the second order, waves are not gravity waves [38]. They result from the non linear
interactions between two Bragg lines (see section 1.4.2. Their directions of propagation
and their amplitudes directly depend on the direction of propagation and the amplitudes
of the waves which are formed.

2.2.2.1 Dispersion relation
The relation between the spatial wavenumber (k = 2π/λ), where λ is the wavelength of
the wave, and its frequency f (ωl = 2πf) is [22]:

ω2
l = gk tanh(kH) (2.2)

where g is the acceleration due to gravity and H the depth of the sea. This relation
is called the dispersion relation. When the depth of the sea is much higher than the
wavelength (H >> λ), tanh(kH) is closed to 1. So, a simpli�ed relation can be used:

ω2
l = gk (2.3)
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This relation is used to go from the spatial domain to the time domain and recipro-
cally.

2.2.2.2 Introduction of the Sea Spectrum

We have seen that a sea surface is a sum of waves. To describe these waves, the power
spectral density of the waves S(~k, ωl) is introduced.

In the statistical sense, the power spectral density S is the mean square of the
Fourier transform (in the space time domain) of ξ(xs, ys, t).

S(~k, ωl) =
L2T

(2π)3

∣∣∣A(~k, ωl)
∣∣∣
2

(2.4)

Using the relation of dispersion, S(~k, ωl) can be more generally expressed as a func-
tion of S(~k) [22]:

S(~k, ωl) =
1
2
S(~k)δ(ωl −

√
gk) +

1
2
S(−~k)δ(ωl +

√
gk) (2.5)

So, the complete sea spectrum can be expressed using the wave number. It depends
on ~k and thus on k and φ. Therefore, S(~k) becomes S(k, φ) which is called the directional
spectrum. This spectrum can be expressed as a separate product of the frequency
spectrum S(k) and of the spreading function D(φ):

S(k, φ) = S(k)D(k, φ) (2.6)

Before describing the frequency spectrum and the spreading function we have used,
we introduce the concept of the signi�cant wave height.

Signi�cant wave height The signi�cant wave height H1/3 in meter is a statistical
parameter which is used in a lot of sea surface modelling. It is the mean value of heights
of the superior third of waves observed during a given period of time (cf. Eq. 2.9). Sig-
ni�cant wave height is used for evaluating the impact of waves in the open sea.

This parameter permits to classify the sea surface in the di�erent sea states. Two
scales are often used: Beaufort scale and Douglas scale.

Beaufort scale proposes an approximated description of the sea state whereas Dou-
glas scale introduces directly a relation between the sea state and the signi�cant wave
height. So, the Douglas scale is more accurate. A description of the di�erent sea states
and their associated wind speed and signi�cant wave height is shown in Table 2.1.
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Sea State Description H1/3 (m) Wind speed (m/s)
0 Calm 0 0
1 Smooth 0 to 0.3 0 to 3.18
2 Slight 0.3 to 0.9 3.18 to 5.51
3 Moderate 0.9 to 1.5 5.51 to 7.11
4 Rough 1.5 to2.4 7.11 to 8.99
5 Very Rough 2.4 to 3.6 8.99 to 11
6 High 3.6 to 6 11 to 14.21
7 Very High 6 to 12 14.21 20.10
8 Precipitous 12 20.10

Table 2.1: Douglas scale

Pierson Moskowitz spectrum In the literature ([16] and [27]), some models are
proposed to generate a spectral density of the sea. In this paragraph, a standard model
is introduced [27]. Eq. 2.7 and Eq. 2.8 represent this spectrum expressed as a function
of k and angular frequency ωl respectively:

S(k) = αH2
1/3

(kp)2
√

(kg)
(kg)3

e
−β
“

kp
k

”2

(2.7)

S(ωl) = αH2
1/3

ω4
p

ω5
l

e
−β
“

ωp
ωl

”4

(2.8)

with:

� β = 33, 93.10−2

� α = 3, 89.10−2

kp or ωp allows to translate the energy of the spectrum toward the desired wavelength
of the sea wave.
Fig. 2.2 plots two Pierson Moskovitz spectra S(k) and S(ωl) for two di�erent values of
the signi�cant wave height. This spectrum is often used to model the gravity waves. We
can see that the sea state is related to the amont of energy observed in the spectrum.
The larger H1/3, the larger the energy in the spectrum.

From Pierson Moskovitz spectrum, we can write [39] [41]:

H1/3 = 0.0297U2 (2.9)

where U is the wind speed.
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Figure 2.2: Pierson Moskovitz Spectrum of the sea (Left) versus the wavenumber (Right) versus the
angular frequency.

The spreading function To realize a directional spectrum, we need to de�ne a
spreading function [16] [14]. It permits to compute the 2D directional spectrum from
the spectral density de�ned previously. A number of common spreading functions can
be found in the literature. In this chapter, the spreading function used is the cos-2s
type of Eq. 2.10:





D(k, φ) = cos2s(φwind−φ
2 )

s = 9.77
(

k
km

)µ

µ = 4.06 if k < km,
µ = −2.34 if k > km

(2.10)

where:

� φwind is the wind direction.

� km = (g2π)/U4. The wind speed U is directly related to the signi�cant wave
height in the Douglas scale (cf. table 2.1).

The spreading function is oriented along an average directional angle φwind. It
means that a main direction must be de�ned which corresponds to the direction of
the main phenomenon of the sea (the current or the wind direction for example). The
representation of this function with φwind is given in Fig. 2.3.

Discretization of the sea surface elevation As we have seen in the previous parts,
the sea surfaces are generated assuming a Pierson Moskovitz spectrum and a cos-2s
spreading function. The sea surfaces has to be discretized in order to perform numerical
simulation. At a time tk, zsi,j,k is de�ned in Eq. 2.11 as the sea elevation of the discretized
sea surface at the horizontal position xsi and ysj .
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Figure 2.3: Directional Spectrum S(k, φ) with its associated Spreading function D(k, φ) in cos-2s
type





xsi = (i− 1)∆x, i = 1, ..., Nx

ysj = (j − 1)∆y, j = 1, ..., Ny

zsi,j,k = ξ(xsi , y
s
j , tk) k = 1, ..., Nt

(2.11)

where ∆x, ∆y are the spatial sampling steps and ξ is a function which returns the sea
elevation zsi,j,k corresponding to the coordinates xsi and ysj on the sea surface. All the
zsi,j,k are grouped in the sea surface elevations matrix Zs

k de�ned at time tk = (k−1)∆t.

2.2.3 Examples of sea surfaces elevations
The sea surface is modelled as a superposition of di�erent sinusoidal plane waves (cf.
Eq. 2.1). The discretized sea surface elevation is then:

ξ
(
xsi , y

s
j , tk

)
=

Nc∑
n

An sin
[
ωntk − kx,nx

s
i − ky,ny

s
j + εn

]
(2.12)

with:
~kn =

(
kx,n
ky,n

)
(2.13)

where An is de�ned from the directional spectrum S and εn is a random value in [0, 2π[.
It can be also de�ned by the multiplication of S and of a random matrix which S
di�erent realizations of sea surfaces elevations generates from one directional spectrum.
Nc is the number of currents describing the sea surface.
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Figure 2.4: Representation of the vector ~kn and its associated sea surface which size is 50× 50 at a
time tk. (a) ~k1 = kx,1

~i with kx,1 = 1 and (b) ~k1 = kx,1
~i with kx,1 = 1 and ~k2 = ky,2

~j with ky,2 = 1

Simple theorical examples In this section, the e�ect of the current is illustrated,
computed from Eq. 2.11. First, two simple theoretical cases are shown in Fig. 2.4, with
An = 1 and ωn = 0.5 ∀n:

� a sea surface which is de�ned from one current Nc = 1, (kx,1 = 1,ky,1 = 0)

� a sea surface which is de�ned from two currents Nc = 2, the previous one (kx,1 =
1,ky,1 = 0) plus an orthogonal second current (kx,2 = 0,ky,2 = 1)

The associated directional spectra are de�ned as one and two Dirac's respectively.

From a Pierson Moskovitz spectrum We now add a lot of plane waves, through
the use of the Pierson Moskovitz directional spectrum, de�ned in Eq. 2.7. Two generated
spectra are presented which correspond to the spectra plotted in Fig. 2.2:

� with H1/3 = 4 m and kp = 3, 32.10−2 m−1
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� with H1/3 = 8 m and kp = 44, 7.10−2 m−1

x

y

(a)

x

y

(b)

Figure 2.5: Sea surfaces whose size is 50×50 at one time step. (a) H1/3 = 0.3 m and (b) H1/3 = 4 m

The same scale is used in both �gures. As we can see, the amplitude of the waves
is larger in the second case where H1/3 is larger (as the energy is larger, cf. section
2.2.2.2). So, in the �rst case, the sea surface is smoother.

Time evolution of a sea surface A last result (cf. Fig. 2.6) shows the evolution of
the sea surface according to time for H1/3 = 4 m. The simulation was realized for tk =
1, 5 and 10s.

Figure 2.6: Evolution of the sea surface according to time

2.3 Buoy movement modelling
Once the sea surface has been modelled, we now have to consider the movements of the
buoys on this surface. The notions of undeformed and deformed array are �rst presented.
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In the second part, a simple numerical modelling of buoys motions is computed over
a discretized sea surface which was presented in the �rst part of this chapter. It in-
troduces a correlation between the shape of the sea surface and the movement of a buoy.

2.3.1 De�nition of the system
2.3.1.1 Introduction of the undeformed array
The undeformed array is used as a reference for the evolution of disturbances in the
radiation pattern. It is a regular linear array aligned along the x-axis, composed of
N = 10 elements with λ/2 interelement spacing, λ being the wavelength at the operat-
ing frequency f (cf. Fig. 2.7).

λ/2
y

z

x

0

φ

d

Figure 2.7: Undeformed array

The HF radar is working at 10 MHz, corresponding to λ/2 = 15 m.

(xn,yn,zn) are the coordinates of buoy n. For the undeformed array, the coordinates
of buoy n are [(n− 1)λ/2, 0, 0]. The coordinates of all the elements of the undeformed
array are grouped in three vectors X, Y and Z as:

X = [ x1, x2, . . . , xN ] (2.14)

Y = [ y1, y2, . . . , yN ] (2.15)



Buoy movement modelling 45

Z = [ z1, z2, . . . , zN ] (2.16)

2.3.1.2 De�nition of the �oating system: the deformed array

 

 

−H

x

y
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l
n,k

Figure 2.8: Receiving array on buoys on sea surface.

We now assume that each antenna is supported by a buoy, �oating on the sea. The
deformed array is then de�ned as the receiving array nom composed by buoys moving
on the sea surface.

Each buoy is anchored to the sea bed thanks to a cable attached at a sea depth H
referenced from the sea surface reference level (cf. Fig. 2.8 and Fig. 2.9). The length
of the cable L de�nes the maximum authorized displacement of the buoy around its
anchorage point. Due to the sea motion and the induced dynamic of buoys, the new
coordinates of buoys are de�ned by X̃, Ỹ and Z̃:

X̃ = [ x̃1, x̃2, . . . , x̃N ] (2.17)

Ỹ = [ ỹ1, ỹ2, . . . , ỹN ] (2.18)

Z̃ = [ z̃1, z̃2, . . . , z̃N ] (2.19)

This deformation of the receiving array on the sea surface introduces deformation
of the radiation pattern.
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Figure 2.9: De�nition of L, the length of the cable.

2.3.2 Modelling of buoys motions
The buoys motions are calculated from the sea surface model presented in section 2.2.2.

In order to consider a receiving array with N antennas, the minimum length of the
underlying sea surface patch has to be equal to (N +1)λ/2 = 165m. The typical values
we have chosen for Eq. 2.11 are:

� Nx = Ny = 210

� ∆x = ∆y = 1 m

� Nt = 60 and ∆t = 0.2s

2.3.3 Buoys displacements
In this section, a simple algorithm is proposed to compute the di�erent positions of
buoys on the sea. These positions are obtained from the shape of the sea surface.
We note (x̃n,k, ỹn,k, z̃n,k) the positions of buoy n at time k. The algorithm can be
decomposed into six steps:

1. The initial coordinates of buoy n (x̃n,1, ỹn,1) are set to the horizontal coordinates
(xn, yn) of the undeformed array.

2. At time k + 1, the buoy moves to a new position (x̃n,k+1, ỹn,k+1) given by:
{
x̃n,k+1 = x̃n,k + ν∆t cosφn,k
ỹn,k+1 = ỹn,k + ν∆t sinφn,k

(2.20)

where ν is a coe�cient representing the displacement speed of buoy over the sea
and φn,k is the angular value φ of the new position relative to the old one, which
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has been de�ned using the steepest slope of the sea surface around the initial point
(x̃n,k, ỹn,k):

φn,k = arctan

(
δξ
δy (x̃n,k, ỹn,k)
δξ
δx(x̃n,k, ỹn,k)

)
(2.21)

3. The corresponding elevation z̃n,k directly depends on the horizontal positions of
the buoy and is computed from the values (x̃n,k, ỹn,k) (Eq. 2.11).

4. ln,k is the distance between the anchorage point and the position of buoy n at
time tk (Eq. 2.22). Its value must be kept smaller than the length of the cable L
(cf. Fig. 2.9).

ln,k =
√

(x̃n,k − xn)2 + (ỹn,k − yn)2 + (z̃n,k +H)2 (2.22)

For each buoy, ln,k+1 is compared to the value of L. If ln,k+1 > L, the new
positions (x̃n,k+1, ỹn,k+1) are limited by D:

D =
√
L2 − (z̃n,k +H)2 (2.23)

which is the maximum possible horizontal displacement of the buoy.

5. Time incrementation, k = k + 1.

6. If k < Nt, we return to step 2 otherwise the algorithm is stopped.
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Figure 2.10: Example of antenna displacements.

An example of antennas displacements is given in Fig. 2.10. It shows the temporal
evolution of the buoy around its initial position.
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2.3.4 Maximum displacement of buoy motion

We have seen that the bouy movement is limited by its physical structure. So, the
buoys are not completely free of their movements. They have a maximum displacement
in all the direction around their initial position.

As the buoy follows the sea surface, the maximum vertical displacement is �xed by
the sea elevations. The horizontal displacement is limited by its cable which imposes
its maximum value.

In extreme cases, when the sea state is large, the maximum vertical displacement
∆vmax could correspond to the signi�cant wave height of the sea (for example with
a sea state of 4, H1/3 = 6 m). If this value is expressed in λ, the maximum vertical
displacement could be equal to λ/2 (with the same example, for f = 25 MHz, λ = 12
m and thus ∆vmax = H1/3 = λ/2).

The maximum horizontal displacement ∆hmax corresponds to the interelement spac-
ing of the receiving array. In Chapter 1, the distance between two antenna is equal to
λ/2, so ∆hmax = λ/2. For that the buoys do not have a common displacement area
∆hmax has to be limited to λ/4 (cf Fig. 2.11).
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Figure 2.11: Common area displacement between two buoys.
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2.4 Conclusion of Chapter 2
This chapter has introduced the modelling we use for the calculation of the surface
elevation matrix Zsk, evolving in time. A new algorithm has been proposed to model
the buoys motions from Zsk. This algorithm will be useful to quantify the disturbances
generated by the array deformations and to test the corrections methods developped in
the next chapter.
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Chapter 3

Correction methods

3.1 Introduction
As we have seen, we need to use a large receiving array to improve the azimuth detection
of a HFSWR radar. However, the available space on the coast is often reduced and it
could limit the number of antennas in the receiving array. So the deployment of the
radar (and more particularly the receiving array) on the coast is one of the encountered
problems.

The alternative challenging solution investigated in Chapter 2 is to use antennas on
buoys over the sea surface. Thus, the location of the HFSWR can be found more easily
(the restrictions on sea surface are not so drastic) but this new deployment introduces
new issues related to the array deformation with sea motion. This chapter is focused
on the disturbances generated by the deformations of the receiving array and proposes
speci�c correction methods to limit their e�ects.

In Chapter 2, the notions of undeformed and deformed array have been presented.
The undeformed array is used as a reference for the evaluation of disturbances in the
radiation pattern. The deformed array is de�ned as the receiving array on buoys moving
on the sea surface. A simple numerical modelling of buoys motions over a discretized
sea surface has been presented. It introduces a correlation between the shape of the
sea surface and the movement of a buoy. Thus, the deformation of the receiving array
on buoys can be quanti�ed, and the associated disturbances in the radiation pattern is
investigated.

A �rst consequence of the displacement of the antenna elements is the modi�cation
of the coupling over the array. This problem will be investigated in the �rst part of the
chapter. The second consequence is the modi�cation of the positions of the antenna
elements that change the very geometry of the array. This "deformation" of the array
will be addressed in the second part of the chapter. The various sources of disturbances
are studied depending on the type of displacement i.e. the vertical (along z axis) and

51
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the horizontal movements (along x and y axis).

The proposed correction methods consist of a modi�cation of the excitation coef-
�cients of the array and can be regarded as array synthesis techniques. Finally, they
are also compared to more conventional array synthesis techniques (using Genetic Algo-
rithms or Particle Swarm Optimization) in order to assess their performance regarding
processing time.

3.2 Study of coupling
On buoys, the receiving array is deformed by the sea surface movement (cf Chapter 2).
With deformations, using passive resonant antennas, the coupling in the array changes
and it can be responsible for disturbances in the radiation pattern. The next section of
this chapter is focused on the coupling in�uence in a deformed array.

3.2.1 Introduction of the coupling
We �rst consider the simple case of mutual coupling between two λ/2 dipoles. The
typical interelement spacing we will use is λ/2 so the mutual impedance cannot be
neglected [23]. We will then extend the investigation to a 10-element array.

3.2.2 Mutual Impedance of two dipoles
We consider the case of two vertical λ/2 dipoles as shown in Fig. 3.1. We will inves-
tigate the modi�cation of the mutual coupling when the position of the second dipole
with respect to the �rst one is varied.

∆v

∆h

Figure 3.1: Parallel dipoles

Two displacements parameters are considered:

� ∆h is the horizontal displacement of the moving antenna
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� ∆v is the vertical displacement of the moving antenna

Figure 3.2: Representation of the coupling between two dipoles

Using the conventions presented in Fig. 3.2, the mutual coupling is de�ned by the
ZMU matrix with:

v1 = i1Z
MU
11 + i2Z

MU
12

v2 = i1Z
MU
21 + i2Z

MU
22 (3.1)

More precisely, the mutual impedance is given as

ZMU
21 =

v2
i1

∣∣∣∣
i2=0

(3.2)
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Figure 3.3: Mutual coupling between 2 dipoles depending on the vertical placement

Fig. 3.3 and 3.4 present the variations of ZMU
21 versus ∆h and ∆v respectively.
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Figure 3.4: Mutual coupling between 2 dipoles depending on the horizontal espacement

The simulations are performed using NEC at 12 MHz [2]. However, in practice, to
reduce the computational cost, we can use a Matlab toolbox (EWA) [1] de�ned with an
analytic model without using the way of electromagnetic simulations. The dimensions
of the dipoles are in λ/2 = 12.5 m. For simplicity, we consider dipoles in free space
which means the e�ect of the sea is not taken into account.

Fig. 3.3 shows that the e�ect of the vertical displacement can be signi�cant. The
magnitude of ZMU

21 varies from 19 Ω to 32 Ω where ∆v is moved from λ/2 to 0. How-
ever, is has been shown in Chapter 2 that the expected vertical displacements were
much smaller (at 10 MHz, λ/2 is about 15 m which is not a realistic wave height for
typical weather conditions).

For λ/10 vertical displacements (which corresponds to 3 m wave heights), the mod-
i�cation in mutual coupling is not so high (only 4 Ω in magnitude). As a conclusion,
variations in mutual coupling do not appear as a major issue for typical vertical dis-
placements as those we can expect for a realistic sea surface.

For horizontal deformations, the displacements can be much larger and the modi�-
cations in the coupling cannot be neglected.

3.2.3 Coupling in an N-antenna array

As we have de�ned the mutual impedance of two dipoles (cf Eq. 3.3), we can generalize
this expression to an array of N dipoles:



Study of coupling 55

v1 = i1Z
MU
11 + i2Z

MU
12 + · · ·+ iNZ

MU
1N

v2 = i1Z
MU
21 + i2Z

MU
22 + · · ·+ iNZ

MU
2N... =

...
vN = iNZ

MU
N1 + iNZ

MU
N2 + · · ·+ iNZ

MU
NN

(3.3)

For a N -element array, it is not so easy to represent the variations of the mutual
coupling when the positions of the di�erent elements are modi�ed.

Here, we prefer to consider the evolution of the magnitude of the electric current at
the middle of a dipole.

For clarity, we adopt a normalized representation of the currents. The reference
value Iref is the current on the central dipole (with an odd number of antennas) or one
of the two central dipoles (with an even number of antennas) of a non deformed array
with uniform excitation.

The normalized currents are de�ned as:

in =
In
Iref

× 100 (3.4)

where In is the non normalized current on dipole n and in is a percentage.

3.2.4 Currents with vertical deformation in the array
Fig. 3.5 represents all the currents in with n = 1, . . . , N considering a vertical defor-
mation in the array. Each column in the graph corresponds to an array in which each
of the 10 di�erent antenna elements exhibits a vertical deviation ∆vn. ∆vn is a value
that is arbitrarily chosen in the interval [−∆vmax,+∆vmax].

Practically, the antennas positions are computed as follows:

x̃n = xn
ỹn = yn
z̃n = zn + (2rn − 1)∆vmax

(3.5)

where (x̃n,ỹn,z̃n) and (xn,yn,zn) are respectively the coordinates of antenna n in the
undeformed and deformed array and R = [ r1 . . . rN ] is a random vector with each rn
which is de�ned with a uniform distribution on the unit interval.

In fact, 100 di�erent simulations are performed for each column corresponding to
100 di�erent random con�gurations of the array with the same maximum deviation
∆vmax.
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Figure 3.5: Current representation according to the vertical ∆v deformation in the array

The �rst column (∆vmax = 0) corresponds to the undeformed array. We can notice
that the currents in all 10 elements are not perfectly identical due to the �nite dimen-
sion of the array. Variations are observed at both extremities (for antenna 1 and 2,
respectively 10 and 9).

When ∆vmax is increased, the dispersion in currents is larger (right area in Fig. 3.5).
However, the maximum deviation is less than 10 %. This con�rms that the disturbance
due to mutual coupling are small (especially if we only consider ∆vmax

λ ≤ 0.1 as stated
before).

3.2.5 Currents with horizontal deformation in the array
Fig. 3.6 represents all the currents in with n = 1, . . . , N , considering horizontal defor-
mation in the array. The only di�erence with the previous section is that the position
of the moving antennas is now:

x̃n = xn + (2rxn − 1)∆hmax
ỹn = yn + (2ryn − 1)∆hmax
z̃n = zn

(3.6)

where Rx = [ rx1 . . . rxN ] and Ry = [ ry1 . . . ryN ] are random vectors, each
rxn and each ryn is de�ned with a uniform distribution on the unit interval.

The variations of current in the array can be large. Even if ∆hmax is weak, if two
antennas of the array get closer, their movement is combined, amplifying their coupling
(and limiting their e�ect on the others antennas). Moreover, when ∆hmax is larger than
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Figure 3.6: Current representation according to the horizontal deformation ∆h in the array

0.1λ, the coupling can radically change the current value on a dipole.

An example of current repartition in an array is given in Fig. 3.7. The dotted line
corresponds to the magnitude of the current in the array without deformation. The
solid line corresponds to the repartition of currents in the deformed array. In the array
without deformation, the repartition of the current is uniform and close to Iref , except
for the two extreme antennas (antenna 1 and antenna 10). With the deformed array,
the repartition of current is not uniform anymore. So, in this case, the coupling e�ect
is very important and it has to be limited.

3.2.6 Conclusion on coupling e�ect in the deformed array
This brief study of the modi�cation of the coupling in the array permits to draw a few
conclusions:

� the modi�cation of coupling for vertical displacements should remain small, espe-
cially because of the reduced amplitude of vertical motions that is expected for
realistic sea surfaces.

� it could be much higher for horizontal displacements �rstly because larger displace-
ments are expected, secondly because the distance between two dipoles (which
controls the coupling) combines the e�ect of two displacements.

3.2.7 Coupling e�ect on the radiation pattern
We now show that the modi�cation of coupling is not always the major cause in the
modi�cation of the array pattern.
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Figure 3.7: Currents repartitions in a deformed array and in an array without deformation

To do so, we compare three di�erent radiation patterns. Their simulation are re-
alized with a uniform 10-antenna array with an interelement spacing equal to λ/2 (cf
Chapitre 1). The �rst one is the radiation pattern of an undeformed array, the sec-
ond one is that of a deformed array with coupling e�ect and the last one is that of
a deformed array without coupling. The three radiation patterns are simulated for
two di�erent deformations: the vertical and the horizontal. The maximum horizon-
tal and vertical displacement which are used during these simulation are de�ned with
∆hmax = ∆vmax = 0.25λ.
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Figure 3.8: Coupling e�ect and horizontal deformation (a) and vertical deformation (b) e�ect on the
radiation pattern
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Fig. 3.8 represents this comparison. In Fig. 3.8 (a), the two radiation patterns of
the deformed array are very close and they exhibit signi�cant disturbances compared to
the radiation pattern of the undeformed array. This demonstrates that the horizontal
deformation of the array is the most important source of disturbances. In Fig. 3.8 (b),
the disturbances are weak whatever the sources of disturbances, (coupling or deforma-
tion).

We have seen that the disturbance in the radiation pattern of the array is not only
due to the modi�cation in the coupling: the variation of the geometry of the array is
often the major issue. This is particularly the case for horizontal displacements of the
antennas where the e�ect of the coupling is negligible compared to the e�ect of the
deformation.

This suggests the procedure that will be used for the correction procedure.

3.3 Receiving array with a vertical deformation
The deformation of the array due to sea movement is responsible for perturbations in
the radiation pattern. The purpose of this section is to propose correction procedures
that compensate for the deformation. The main assumption is that the position of
the antenna elements in the deformed array can be known with a su�cient accuracy.
When this condition is satis�ed, we show that a judicious modi�cation of the weighting
coe�cients can be used to compensate for the displacements.

In a vertical displacement [11], there is no physical deformation in the observation
plane (xOy), so the main disturbances come from the modi�cation of the coupling in
the array when the dipoles move vertically. Although these disturbances are usually
small, they can be corrected easily.

Figure 3.9: Representation of the coupling in a dipole.

Let I = [ i1, i2, . . . , iN ]T be the currents in the antenna ports that produce the
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desired radiation pattern. The impressed voltages Vg = [ vg1, vg2, . . . , vgN ]T can be
de�ned as:

Vg = (Z + ZgId) I (3.7)

where Zg is the source impedance, ZMU is the impedance matrix (representing cou-
pling) and Id is the identity matrix.

For simplicity, in the following example, ZMU is built from the mutual impedance
of two parallel dipoles in free space for di�erent vertical shifts between the antennas [23].

−80 −60 −40 −20 0 20 40 60 80
−40

−35

−30

−25

−20

−15

−10

−5

0

azimuth angles φ

M
ag

ni
tu

de
 (

dB
)

 

 

without correction
with correction

Figure 3.10: Radiation pattern of 10-antenna array with a vertical deformation and with uniform
weights, with and without correction with a ∆vmax = 0.25λ.

Fig. 3.10 illustrates the e�ect of the correction procedure. These simulations are
computed with a 10-antenna array with an interelement spacing equals to λ/2. The
case without deformation corresponds to a uniform array with vertical deformation
(modifying the z coordinates of antennas. The case with correction is the same array
changing the uniform weights by the weights given by the correction method. We used
∆vmax = 0.25. It compares the radiation patterns obtained for two di�erent impressed
Vg.
The case 'without correction' corresponds to an array where the z coordinates of the
antennas are di�erent but Vg is calculated using the Z matrix of the undeformed array.
The case 'with correction' corresponds to the same array but it now utilizes the actual
ZMU matrix of the deformed array. As can be seen, the correction procedure results in
a signi�cant decrease of the sidelobe level.
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3.3.1 Robustness of the vertical correction method
In the previous section, the mutual coupling ZMU is prefectly known. This approach is
not realistic and it could be interesting to study the robustness of the correction method
with ZMU partially unknown. This section is focused on this point.

So, we de�ne ∆ZMU as a matrix of errors which can be added to ZMU:

Z̃MU = ZMU + ∆ZMU (3.8)
where Z̃MU is the noisy matrix.

Each coe�cient of the error matrix is a real random number. We assume a uniform
distribution in the range [−4Ω, 4Ω]. The maximum error (4Ω) corresponds to 11% of
the maximum coupling coe�cient for the considered con�guration when ∆v = 0 and
∆h = λ/2.
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Figure 3.11: (a) Radiation patterns with the two di�erent corrections methods (b) their representa-
tions of the positions of the roots of the associated polynomial

Fig. 3.11 (a) shows the radiation pattern applying the vertical correction method
when the coupling is perfectly known and when errors are added. Fig. 3.11 (b) rep-
resents the positions of the roots of the associated polynomial. The simulation was
realized for ∆vmax = 0.25λ. As can be seen, large increases of SLL appear when the
coupling matrix that is used for correction is not perfectly characterized. This can be
interpreted using the Shelkuno�'s representation. We remind that it relies on the anal-
ysis of the associated polynomial F (z) =

∑
inz

n. Here, in is the nth coe�cient of the
current vector I =

(
ZMU + Zg

)−1 Vg.

This equation shows that the in coe�cients are modi�ed when the coupling ZMU

is changed. As a result, the associated polynomial is also modi�ed and this causes a
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displacement of the roots in the Shelkuno� representation (cf Fig. 3.11 (b)).

Figure 3.12: Example of roots displacement

Using this representation, an improved correction is proposed. It consists of identi-
fying the few roots whose position has been signi�cantly modi�ed and move them back
at their initial position. Fig. 3.12 gives an illustration where roots 1, 4, 5 and 8 have
to be moved back on the unit circle.

If we go deeper into technical details, two issue have to be discussed. The �rst one
is the criterion that is used to decide which roots have to be displaced. This can be
done by measuring the distance between the initial position and the 'erroneous' one. If
it exceeds a given threshold, the displacement process is actived. The second issue is
the mechanism that is used to bring back a root to its initial position. This is done by
imposing the initial value of the roots at the 'erroneous' one.

In practice, both issue can be addressed simultaneously by optimizing the positions
of the roots thanks to optimization routines such as genetic algorithm.

Fig. 3.11 (a) shows the improvement of the results with this new correction method.
The increases of sidelobes are limited, compensating for errors in ZMU. The displaced
roots chosen during the correction method are exposed in Fig. 3.11 (b).

To conclude, the new correction method drastically limits the increases of SLL gener-
ated by the errors in the mutual coupling matrix. Moreover, the new correction method
inspired from the Shelkuno�'s representation has a double utility:

� it quanti�es the errors in ZMU to know if the correction method can be applied

� it �nds the roots which are responsables for the disturbances when ZMU is erro-
neous
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3.4 Horizontal deformations of the receiving array
For horizontal movements, the problem is a bit di�erent. We �rst consider the longitu-
dinal movement (along the array axis, (O, x) ). The main disturbance does not result
from coupling modi�cations but from the modi�cation of the interelement spacing in the
array. The deformed array can be seen as a linear array with a non regular interelement
spacing (cf Fig. 3.13).

Figure 3.13: Longitudinal deformation

The coupling is a secondary e�ect that could be accounted for as in Section 3.3 and
will not be discussed again here.

3.4.1 Compensation method for longitudinal movement
We assume that the antennas positions are perfectly known. The principle of the pro-
posed correction method consists in balancing the changes in the interelement spacing
by a modi�cation of the excitation coe�cients. Haupt has studied the reciprocal prob-
lem in [17]. In the following, in is the current in antenna n for the undeformed array and
ĩn is the corresponding coe�cient to be used in the deformed array. The compensations
can be realized by forcing the coe�cients so that the nulls of the radiation patterns
correspond to those of the undeformed array. A linear system is then obtained:

N∑

n=1

ĩne
jkx̃num =

N∑

n=1

ine
jkxnum m = 1, ..., N − 1 (3.9)

where um = cosφm and φm is the azimuth angle of null m in the radiation pattern.
Eq. 3.9 represents a linear system of N − 1 equations for N unknowns. We choose to
set ĩN = 1 to �x the proportionality level of all the weights ĩn. Eq. 3.10 is the new
linear system which has to be solved.

N−1∑

n=1

ĩne
jkx̃num =

N∑

n=1

ine
jkxnum − ejkx̃Num m = 1, ..., N − 1 (3.10)

Eq. 3.10 can be rewritten in the following matrix representation with X̃1 = [ x̃1 x̃2 . . . x̃N−1 ].

ẼĨ1 = EI−A (3.11)
with
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U = [ u1 u2 . . . uN−1 ]T (3.12)

E = exp (jkUX) (3.13)

Ẽ = exp
(
jkUX̃1

)
(3.14)

where Ĩ1 =
[
ĩ1 ĩ2 . . . ĩN−1

]T and A =
[
ejkx̃Nu1 ejkx̃Nu2 . . . ejkx̃NuN−1

]T . When
I is known, we can easily compute Ĩ1 with Eq. 3.15.

Ĩ1 = Ẽ−1 (EI−A) (3.15)

and Ĩ, which corresponds to all the correction weights, is easily found:

Ĩ = [̃IT1 , 1]T (3.16)

In the next part, the correction method is extended when both longitudinal and
transverse movements are considered.

3.4.2 Methods for joint longitudinal and transverse movements
The transverse and longitudinal corrections can be realized simultaneously. A new linear
system is then de�ned (Eq. 3.17):

N∑

n=1

ĩne
jk(x̃num+ỹnu′m) =

N∑

n=1

ine
jkxnum m = 1, ..., N − 1 (3.17)

with u′m = sinφm.

For longitudinal deformations, the resulting deformed array is a linear array with
non equidistant elements. For both longitudinal and transversal deformations, the array
is not linear anymore.

Figure 3.14: Longitudinal and transerve deformation

As a result, the array factor does not exhibit any rotation invariance. Eq. 3.17 is
used to set the nulls for the front radiation only (φ ∈ [0, π]). No control on the back
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radiation is possible. This is not a problem for the foreseen application as no received
power is expected from the back. We de�ne the new expression u′m:

U′ = [ u′1 u
′
2 . . . u′N−1 ]T (3.18)

the new matrix Ẽ is given by:

Ẽ = exp
(
jk

(
UX̃1 + U′Ỹ1

))
(3.19)

with Ỹ1 = [ ỹ1 ỹ2 . . . ỹN−1 ] and the currents to be used are given by Eq. 3.15 and
Eq. 3.16 whereA is new given byA =

[
ejk(x̃Nu1+ỹNu

′
1) ejk(x̃Nu2+ỹNu

′
2) . . . ejk(x̃NuN−1+ỹNu

′
N−1)

]T
.

Using this formulation, an example is given in the next section.

3.4.3 Results for the horizontal correction method
Fig. 3.15, is a 2 D color plot of the radiation pattern versus time for an array on a
moving sea. The color scale corresponds to the relative magnitude of the �eld (in dB).
The sea surface is modeled at each time step as explained in Chapter 2. The resultant
deformation of the array is deduced, from which the radiation is computed. Fig. 3.15
(a) corresponds to the case where no correction is applied while Fig. 3.15 (b) accounts
for the improvements brought by the correction method. A classical 1D radiation pat-
tern can be obtained at each time step by selecting a speci�c abscissa in the 2D plots
(see Fig. 3.18 that gives a 1D cut at t = 2s). An explanation of the graph construction
is given in Fig. 3.17.

Three di�erent kinds of displacements (generating more and more disturbances in
the receiving array) are studied corresponding to three di�erent sea states (their values
being 1, 3 and 6). Fig. 3.15 represents the radiation pattern versus time with and
without correction. Fig. 3.16 represents the same radiation pattern when a -3 dB
threshold is applied for better clarity. It shows the direction of the main beam and the
-3 dB beamwidth with and without correction respectively:

� For sea state 1, the sea is smooth (cf Table 2.1, Chapter 2) and the deformations
in the array are small. The sidelobe level slightly increases in speci�c directions of
φ (cf Fig. 3.15 (a)). The main beam direction is not a�ected by the sea movement
(cf Fig. 3.16 (a)),

� For sea state 3, the sea is moderate and the deformations generate stronger dis-
turbances in the radiation pattern (cf Fig. 3.15 (c)). The sidelobe level increases
up to -6.6 dB (at t=10 s). For this sea state, the main beam direction is also not
signi�cantly a�ected (cf Fig. 3.16 (c)),

� For sea state 6, the disturbances in the radiation pattern are very large (cf Fig.
3.15 (e) and 3.16 (e)). The direction of the main beam is changing signi�cantly
and the sidelobe level can be very high (for example one may observe a sidelobe
level reaching up to -2.4 dB, at time t=10 s).
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Figure 3.15: Array factor without correction (a) (c) (e) and with correction (b) (d) (f) for sea state
1: (a) and (b), sea state 3: (c) and (d), sea state 6: (e) and (f)

However, our correction maintains the direction of the main beam and the -3 dB
beamwidth (10◦ with a main direction equals to 0◦ in Fig. 3.15 (b) (d) (f)) compared to
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Figure 3.16: Representation of the radiation pattern part above the threshold of -3 dB (direction of
the main beam and -3 dB beamwidth): without correction (a) (c) (e) and with correction (b) (d) (f)
for sea state 1: (a) and (b), sea state 3: (c) and (d), sea state 6: (e) and (f)

the result without correction (up to 12◦ with a main direction equals to ±5◦) whatever
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Figure 3.17: An explanation of graph 3.15

the sea state (up to 6).

For the considered array, φN−1 = 143◦ we can notice that the correction reduces the
sidelobe level for φ ≤ φN−1.

For φ larger than φN−1, the correction is not valid anymore. As an illustration,
Fig. 3.18 gives a cut of the result obtained with the radiation pattern in Fig. 3.15 (c)
and 3.15 (d) for t = 2 s and a sea state equal to 3. In [0, φN−1[, with correction, the
maximum SLL is equal to -12.59 dB, instead of -13 dB for the undeformed array and
-9 dB for [φN−1, 180◦]. However, the correction method proposes a better result than
the case without correction where the SLL are equal to -2.5dB for [φN−1, 180◦].

The magnitudes of ĩn, corresponding to the results in Fig. 3.15 are given in Fig.
3.19. The magnitude of the weights increases with the level of sea state. The maximum
value is lower than ten. The weights values are thus realistic and they are implemen-
tal in a real process. It means that the approach could be implemented in real life arrays.

We have seen that, the vertical correction method directly computes the prefect set
of weights, considering the coupling e�ect. So, it is a direct method which proposes
the best solution. It is not the case considering the horizontal correction method. An
investigation of its robustness is necessary for its validation.
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Figure 3.18: Array factor in Fig. 3.15 (c) (without correction) and in Fig. 3.15 (d) (with correction)
for t = 2 s and sea state value equal to 3

3.4.4 Quantitative analysis of the performance of the horizontal cor-
rection

We now propose a more systematic assessment of the correction method. In this section,
the investigation is limited to the horizontal correction. Each antenna position is de�ned
using horizontal deformations around its initial position (xn, yn):

x̃n = xn + ∆xn
ỹn = yn + ∆yn

(3.20)

where ∆xn and ∆yn, the horizontal deformations from the initial position. They
are represented by a normal distribution with a variance σ2.

When σ2 increases, the deformation of the receiving array increases. The values of
σ2 are chosen to be consistent with deformations studied in Chapter 2.

For each level of deformation (or σ2), 100 random perturbations were averaged. For
each draw, the maximum sidelobe level (SLL) is computed. Fig. 3.4.4 corresponds to
a uniform 10-antenna array (the initial weights I without correction are uniform and
equal to one) with and without correction. The maximum SLL which is noticed in the
interval where the horizontal correction method is e�ective, that is [0, φN−1]. For a
10-element array, the interval is [0, 143◦].

Observing Fig. 3.4.4, we can see that the correction is robust up to σ2 = 0.1λ2 as
the maximum SLL is lower than -10 dB.
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Figure 3.19: Values of weights to apply correction methods: (a) sea state 1 (b) sea state 3 (c) sea
state 6

We have seen that the correction procedure is not e�cient for φ larger than φN−1.
One possible solution would be to increase N so that φN−1 gets larger.

Fig 3.21 represents the value of φN−1 depending on the number of antennas in the
array. The oscillations correspond to the parity of N (with an even number N , φN−1 is
larger than with an odd number). We can see that with a uniform 100-antenna array
φN−1 = φ99 = 169◦. It means that the correction method can be realized on almost all
the front radiation pattern.

The performance of the correction for such a receiving array is presented in Fig. 3.22.

Thus, the horizontal correction method can be applied in a larger interval [0, 169◦].
Increasing the number of antennas in the array, the maximum SLL which is obtained is
globally lower (around -13 dB for all σ2 values).

Even if such an array is larger than existing arrays radar array, it is possible to have
this array in the highest frequencies of the HF band. For example, at 12 MHz, the
corresponding λ is equal to 10 m. It means that the length of the array is equal to 500
m with λ/2 interspacing.
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Figure 3.20: Robustness of the correction method of a 10-antenna array

Another way to improve the horizontal correction method is to consider other initial
weights. Until now, the method was presented with uniform weights: I = [ 1 1 . . . 1 ]T .
Tchebychev weights permit to compute radiation pattern with a uniform SLL (cf Chap-
ter 1).

As an illustration, Fig. 3.23 presents the performance of a 100-element array with
Chebychev weights for -40 dB.

Although the correction procedure does not succeed in maintaining such a SLL, it
results in a radiation pattern where the maximum SLL is under -20 dB.

3.4.5 Robustness of the horizontal correction method

This section is focused on the robustness of the horizontal correction method. Until now,
when a correction method is used, the positions of buoys are supposed to be perfectly
known. We now assess the e�ect of positioning errors. This aspect is very important
because the e�ciency of the method depends on the accuracy of the positioning system
which is used.

In practice, the antennas positions on the buoys are supposed to be measured with
a Global Positioning System (GPS).

First, we have to give a new de�nition of the antennas positions, introducing the
positioning errors:
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Figure 3.21: value of φN−1 according to the number of antennas in the receiving array

x̃′n = x̃n + ∆x̃n
ỹ′n = ỹn + ∆ỹn

(3.21)

where ∆x̃n and ∆ỹn are the positioning errors, (x̃n, ỹn) are the exact horizontal
coordinates of antenna n (in the considered example σ2 = 0.05λ2) and (x̃′n, ỹ′n) are
the measured coordinates of antenna n with a GPS. ∆x̃n and ∆ỹn are de�ned using a
normal distribution with a variance σ2

e .

frequency 5 MHz 7.5 MHz 15 MHz 30 MHz
λ(m) 60 40 20 10

λ/10(m) 6 4 2 1

Table 3.1: Precision in meter in HF band

The studied array is a uniform 100-antenna array. All the results concerning the
positioning errors are represented in Fig. 3.24. As we have seen in the previous section,
for all the points of the curve (or for each value of the variance σ2

e), 100 draws have been
realized and for each draw the maximum has been computed. The curve represents the
mean of the maximum SLL of all these draws in dB. The correction is applied assuming
the antennas have the measured positions while the radiation pattern is computed using
the exact positions.

We can see that if the positioning errors are large, the e�ects of the correction
method are limited. Typically, the maximum admissible variance is σ2

e = 0.01λ2 (with
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Figure 3.22: Robustness of the correction method of a 100-antenna array

a standard deviation σe = 0.1λ) which corresponds to a -10 dB SLL.

Table 3.1 is a representation of the maximum positioning error following the working
frequency, considering σe = 0.1λ. We can quantify the equivalent maximum positioning
error (∆x̃n and ∆ỹn) in meter following the working frequency. For example, it is 1
meter for f = 30 MHz.

3.5 Comparison with iterative methods

Our method has proved to be fast and quite e�cient. It is therefore interesting to
compare it to standard well known correction methods based on iterative algorithms.
To this end, two global methods are studied, the Genetic Algorithm (GA) and the
Particle Swarm Optimization (PSO).

The litterature is full of detailed presentations of GA and PSO algorithms, for
instance see [19] [18]. We will thus restrict our presentation to the modi�cations we
have made to adapt these algorithms to our problem. We now show how GA and PSO
can be used to provide a new way of correcting the excitation weights in our deformed
arrays. The goal is to improve the radiation patterns (compared to the ones we obtained
with the proposed correction methods in the previous sections) and especially to reduce
the SLL.
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Figure 3.23: Robustness of the correction method of a 100-antenna array with Tchebychev weights
of -40 dB

3.5.1 Genetic algorithm method

3.5.1.1 GA modi�cations

The idea is the same as for as our correction method: we optimize the positions of
the zeros so that the SLL is reduced to a certain value. The �tness function is thus
the maximum of the SLL and a chromosome is a set of the roots of the associated
polynomial of the deformed array. There are N-1 roots for N weights. In addition, it is
also needed to optimize for the width of the main lobe. This width of the main lobe is
de�ned by two roots. By �xing these two roots, we then optimize only the other N-3
roots.

At each iteration, we keep the �rst half of the chromosomes which are ranked by
SLL. The second half is recreated by swapping the �rst half at a random point. Finally,
one random mutation of one bit is introduced. The number of chromosomes in the
initial population is equal to the length of one chromosome.

The problem is then to code the roots: each root n is a complex number rn =
an + jbn. We have found that de�ning an and bn ∈ [−10; 10] with a resolution of 0.01
gives the best results. So, the number of possible solutions for an and bn is equal to
2001. Thus, an and bn can be encoded with 11 bits and each root is encoded with
Lgene = 22 bits.

As time goes on, the sea surface changes, the buoys move and thus a new set
of weights has to be computed. However, the new sea surface is not very di�erent
from the previous one. Therefore, in order to speed up the computation, one of the
chromosome is initialized with the previous set of weights (except for the �rst time).
This is illustrated in Fig. 3.25.
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Figure 3.24: In�uence of positioning errors

3.5.1.2 GA results

The algorithm is tested for three di�erent sea states with Nt = 60 time values with a
0.2 s time step for each sea state. The �tness function is a SLL less than -13 dB. We
consider the same 10-element array, so each chromosome is encoded with Lchrom = 154
bits. The GA results are illustrated in Fig. 3.26, 3.27 and 3.28 for sea states 1, 3 and 6
respectively. The sea surfaces used are the same that were used to test our method in
order to properly compare the various methods.

The left part (cf. Fig. 3.26 (a) for instance) corresponds to the radiation pattern
evolving with time. The same representation has been used for our method in Fig. 3.15.
The bottom right part (cf. Fig. 3.26 (b) for instance) is a cut at -3 dB of the radiation
pattern of the left part. This is to be compared to Fig. 3.16 that shows the results for
our method.

The number of iterations is associated to the number of radiation pattern (RP). It
means that the top right part (cf. Fig. 3.26 (b)) is the number of radiation patterns
which were necessary to �nd a solution. Two kinds of results can be considered. If the
algorithm is successful (radiation pattern with a SLL < -13 dB), the number of iterations
is indicated with a triangle. If it is not the case, the algorithm was terminated exceeding
the number of iterations Nlast and this kind of result is represented with a circle. So,
the given solution corresponds to the best solution we have obtained and the number
of radiation pattern we have needed to �nd it.

When the sea state increases, the deformation in the receiving array is larger and so
is the computational cost. Globally, the GA correction method proposes better results
than our correction method. The SLL are globally lower particularly when the array
has strong deformations (around -13 dB for a sea state 1 and 3, around -10 dB for a sea
state 6).
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Figure 3.25: Flow chart of the GA applied for the simulation.
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Figure 3.26: GA correction (Ngene = 15, Nchrom = 128) with a sea state 1
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Figure 3.27: GA correction (Ngene = 15, Nchrom = 128) with a sea state 3
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Figure 3.28: GA correction (Ngene = 15, Nchrom = 128) with a sea state 6
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If the deformations of the array are weak, the number of radiation patterns computed
to have a good solution is limited (for example cf. Fig. 3.26(a), from 0 s to 4.6 s).
Actually, the �rst time step requires 25000 radiation patterns, and then, thanks to the
slow modi�cations of the sea surface and the proper initialization of the population, only
a few steps are needed. But for strong deformations, the number of radiation pattern
can be very large (for example cf Fig. 3.26(a), from 5.2 s to 8.8 s).

Furthermore, the method does not always propose a good solution. For example,
with a sea state 6, the beam changes its main direction of a few degrees. A condition
is thus necessary to conserve this direction, the �tness function has to be improved
accordingly. But whatever the result, the GA is so long to run that it is not suitable for
a real time application. The reason is the binary encoding of the positions of the roots
which leads to large chromosomes. The next section will thus consider another kind of
iterative algorithm, the PSO.

3.5.2 Particle Swarm Optimization method
Contrary to the GA correction methods, the roots of the associated polynomial are not
taken into account. This choice of population for GA was realized considering the large
computational cost. It is not the case for PSO which is more acceptable.

3.5.2.1 PSO �tness function and evaluation of population

Two PSO correction methods are presented, proposing two di�erent �tness functions.
The �rst one has a �tness function which corresponds to the maximum SLL in the
radiation pattern. As for the GA method, the PSO is terminated if the �tness value of
one agent is inferior to -13 dB or if the number of iteration Llast is superior to 300.

The second one considers a new �tness function which takes into account the width
and the azimuth position of the main beam, in addition to the maximum SLL.

F = F1 + 10× F2 + 10× F3 (3.22)

where F1 is the maximum SLL in dB, F2 is the width of the main beam in degree
and F3 is the relative position of the main beam in degree, considering that its initial
position is in 90◦.

3.5.2.2 Results of PSO correction methods

The same sea surfaces as in the GA section are used, along with the same way of
presenting the results.

The results of PSO correction method 1 are illustrated in Fig. 3.30, Fig. 3.31 and
Fig. 3.32 for sea state 1, 3 and 6 respectively and the results of PSO correction method
2 are illustrated in Fig. 3.33, Fig. 3.34 and Fig. 3.35 for sea state 1, 3 and 6 respectively.

As we have seen with the GA correction method, when the sea state increases, the
deformations in the receiving array are larger and the computational cost increases.
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Figure 3.29: PSO applied for the simulation.
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Figure 3.30: PSO correction method 1, sea state 1
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Figure 3.31: PSO correction method 1, sea state 3
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Figure 3.32: PSO correction method 1, sea state 6
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Furthermore, the algorithm does not propose systematically a good solution. Besides,
the PSO correction methods are faster than the GA correction method.

The results of the PSO correction method 1 has a good results except for a sea state
of 6 where there is no main beam anymore at 4 s and 6 s.

The results of the PSO correction method 2 are better than PSO correction method
1, the improvement of the �tness function permits to have a width and a position of
the main beam which is unchanged from the main beam of the undeformed array even
if sometimes the proposed solution cannot be validated giving a radiation pattern with
a large main beam (for example see Fig. 3.35 between 5 and 7 s).

Moreover, the PSO correction method 2 is globally as fast as the PSO method 1.
Sometimes method 2 is a little bit slower, the new �tness function generating sometimes
a computational cost more important (for example cf Fig. 3.34 at 10.8 s). Sometimes
it is faster (for example cf. Fig. 3.35 at 2 s) the �tness function helping for the choice
of a good solution.

3.5.2.3 Conclusion of PSO methods
PSO correction methods propose faster solutions than the solutions given by the GA
correction method. PSO correction method 2 is a good compromise between the compu-
tational time and the obtained result. The conditions which are imposed in the �tness
function permit to converge quickly toward a good solution. If we compare this method
with the correction method developed in chapter 4, the PSO method proposes a better
solution than the correction method but the computational cost is more important.

3.6 Conclusion of Chapter 3
A method has been presented that permits to correct the horizontal and vertical dis-
placements of antenna elements in a deformed array. The vertical correction relies on
the knowledge of the modi�cation of the coupling matrix. The horizontal correction can
be synthesized by forcing the nulls in the radiation pattern of a deformed array. The
goal is to obtain the same zeros as in the initial undeformed array. Both techniques re-
sult in the decrease of the SLL that have appeared as a result of the array deformation,
while keeping a correct main beam.

A comparison with iterative algorithms has shown that our method is a little bit
outperformed in terms of SLL, but leads to a drastic reduction of the computation
time. Our method paves the way for real time compensation in moving arrays such as
HFSWR on �oating buoys.

The robustness of the horizontal correction method has also been analyzed. It has
permitted to see that it relies on a good knowledge of antennas positions. A method to
have a better knowledge of antennas positions is proposed in Chapter 4.
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Figure 3.33: PSO correction method 2, sea state 1
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Figure 3.34: PSO correction method 2, sea state 3
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Figure 3.35: PSO correction method 2, sea state 6



Chapter 4

Direction of Arrival

4.1 Introduction
Through speci�c post-processing of signals impinging on the antenna array it is possible
to obtain information about target direction of arrival. Several algorithms have been
developed in that purpose over the last thirty years. The most popular is certainly
the MUSIC algorithm [31], standing for MUltiple SIgnal Classi�cation. This method
allows to retrieve the directions of arrival of targets, by extracting properties of the
correlation matrix of received signals in the receiving array. The MUSIC algorithm has
been developed under the hypothesis that the position of each antenna in the receiving
array is perfectly known.

For our peculiar problem it is interesting to evaluate how robustness behaves when
antenna positions are not exactly known, but de�ned with some positioning errors.
This situation is precisely the one of a receiving array whose each antenna is placed on
a buoy on sea surface and is equipped with a GPS receiver (the positioning errors of
each antenna is equal to the error corresponding to the accuracy of the location given
by a GPS system).

This chapter provides a detailed presentation of the MUSIC algorithm and focuses
on the Weiss Friedlander method which is an evolution of MUSIC for improving per-
formances for deformed arrays. A set of simulations has been done in order to evaluate
positioning errors of the antennas in the moving receiving array. Finally, we conclude
about the e�ciency of these kind of algorithms in the practical cases of our study.

4.2 Mathematical formulation of the problem
We consider a N antennas receiving array and D incident monochromatic waves. D
corresponds to the number of targets to be detected. A received signal is associated
with each antenna. It is stacked in the following 1×N vector

83
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S = [S1, . . . , SN ]T (4.1)

Each received signal Si is de�ned either from a single measure or from the averaging
of a large number of measured samples.

Each incident wave is associated with a complex quantity Fj . The phase reference
point has been arbitrarily chosen as being the position of the �rst antenna placed con-
ventionally at origin. All these quantities can be combined into the following 1 × D
vector F = [F1, . . . , FD]T .

It noted that D, the dimension of F, is not a priori known.

Similarly, each noise component on each receiverWi is stacked in the following 1×N
vector W = [W1, . . . ,WN ]T .

λ/2
x

y
one target is the direction of φ

1

φ
1

antenna 1

Figure 4.1: Direction of the incident wave generated by a target

We assume that the measured vector S can be written as a linear combination of D
incident waves plus noise. It is related to the incident vector F as:

S = AF + W (4.2)

Where A is the complex (N ×D) rectangular matrix associated with the receiving
array.

A = [a1, . . . ,aD] (4.3)

This matrix is made of D columns vectors aj de�ned as:

aj = [ a1j , . . . , aNj ]T (4.4)
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Each column vector aj is called a modal vector and is depending on the response
of the system for a given set of variables. The component aij of the modal vector is
depending on:

� the position ri of receiver i, the radiation pattern (directivity, gain, etc...).

� the incident angle φp of incident wave p, its frequency, its polarization as well as
the position rp of the target (if it is not localized at in�nity)

In the following sections, the number of variables will be considered constant in the
process of the calibration of the system: we will calibrate the modal vectors as being the
functions of both given incident angle φ and locations of the antennas (stacked in the
vector r). We call them aj(φ). All the other parameters are implicitly known: frequency
of the wave, polarization, etc...

Thus, the knowledge of the modal vectors of the matrix A is equivalent to the
knowledge of all the parameters of the problem, including the direction of arrivals.

The antenna n response (in the case of an assumed uniformed and linear receiving
array) from the p source coming from φp direction is de�ned as:

an(φp, xn, yn) = exp
(
j
2π
λ

(xn cosφp + yn sinφp)
)

(4.5)

where xn is the coordinate of antenna n in the array and λ is the wavelength of the
received signal.

In Eq. 4.5 the locations of the antennas are perfectly known. To take into account
a given uncertainty on the position of antennas, we add the error terms ∆xn and ∆yn
to the initial position of the receiving array (xn, yn):

an(φp, xn, yn) = exp
(
j
2π
λ

((xn + ∆xn) cosφp + (yn + ∆yn) sinφp)
)

(4.6)

The MUSIC algorithm which is described in the following section has not been set
up for a situation with an error term on the antennas position.

The blind determination of the modal vectors will be a�ected by these errors terms.
It will be considered as a new unknown parameter which can be added with the others
existing parameters. The Weiss Friedlander algorithm has been introduced to deal with
this kind of situation, [31] and [40]. This approach which permits to jointly estimate
the errors of the positions of the antennas and the real directions of the arrivals of the
targets will be evaluated in the last sections of the chapter.
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4.3 Presentation of MUSIC Algorithm
In this section the MUSIC algorithm is presented. This algorithm allow to determine
the direction of arrivals for one or few targets from the receiving array.

The receiving array can have a speci�c geometry, like a linear or a circular geome-
try. However, the study will be done in the case of an uniform linear array on which we
apply a random deformations.

So, in the �rst part of the study, the receiving array is uniform (without positioning
errors of the antennas).

The �rst goal is to determine the modal vectors corresponding to the received sig-
nals, from the measures (S vector).

4.3.1 Preliminary remarks
The vector S belongs to an N dimensional vector space Ξ. If the problem 4.2 is noise
free (W = 0), Eq. 4.2 corresponds to a linear combination of D modal vectors of the
matrix A and so S is embedded in a subspace vector of Ξ. Lets call G this subspace
(subspace Signal of Ξ).

The dimension of subspace G is not necessary equal to D because there may exist
some linear dependencies between some modal vectors. In the general case:

dim(G) ≤ D (4.7)

In fact, the dimension of G is equal to the rank of the matrix A. This is the rank of
the matrix A which determines the number of incident signals. So, to detect D inde-
pendent signals, the number of antennas N has to be de�ned as N ≥ D. In the opposite
case (if N < D ), the system 4.2 indicates that the D modal vectors are necessarily
dependant. Thus, the rank of the matrix does not permit to determine the number of
targets.

In the case where an additive noise is assumed, the vector S is not totally included
in G, but it has some projection into the noise subspace (eq. 4.1).

The D modal vectors aj of the matrix A correspond to an array of antennas which
is illuminated by D individual impinging waves. They belong to a set of all the modal
vectors, corresponding to the possible values which can be taken into account by the
variables of the problem.

This in�nite set is called Ω and it contents an in�nite number of vectors. Ω is the
complete characteristic of the receiving array in all its possible responses (determined
by the geometry, the radiation patterns and the directivity). It can also be called the
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continuum of vectors aj.

The fundamental principle of the algorithm MUSIC is to analyse the structure of
the received signal covariance matrix.

4.3.2 Measured covariance matrix
We assume that the vector S is centred (if it is not the case, we can build Sc = S− Sa

from Sa the average of S). The covariance matrix R is built from the measurement
vector S, E stands for the mathematical expectation. The symbol † is the transposed
conjugate application:

R = E(SS†) (4.8)

It can be shown that all the characteristics concerning the incident signals can be de-
duced from the covariance matrix R.

R is a N ×N square matrix. It can be written in more detail as:

R =




E(|S1|2) E(S1S
†
2) . . . E(S1S

†
N )

E(S2S
†
1) E(|S2|2) . . . E(S2S

†
N )

... ... . . . ...
E(SNS

†
1) E(SNS

†
2) . . . E(|SN |2)


 (4.9)

This matrix is Hermitian. The elements which are not on the diagonal of the matrix
express possible correlations between the di�erent signals which are measured on each
antenna. If we introduce the relation 4.2 in 4.8, we obtain:

R = E((AF + W)(AF + W)†) = E(AFF†A† + WF†A† + AFW† + WW†) (4.10)

If we assume that incident signals and noise are independent on each antenna we
have:

R = APA† + B (4.11)

with:

P = E(FF†) =




E(|F1|2) E(F1F
†
2 ) . . . E(F1F

†
D)

E(F2F
†
1 ) E(|F2|2) . . . E(F2F

†
D)

... ... . . . ...
E(FDF

†
1 ) E(FMF

†
2 ) . . . E(|FD|2)


 (4.12)

and
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B = E(WW†) =




E(|W1|2) E(W1W
†
2 ) . . . E(W1W

†
N )

E(W2W
†
1 ) E(|W2|2) . . . E(W2W

†
N )

... ... . . . ...
E(WNW

†
1 ) E(WNW

†
2 ) . . . E(|WN |2)


 (4.13)

P is an (D×D) Hermitian matrix characterizing only the incident signals. Diagonal
elements correspond to the energies which are carried on by the D incident waves. The
o� diagonal elements express the level of correlation between incoming waves.

B is an (N ×N) matrix, which characterizes the di�erent noises which disturbs the
real signals. We assume the following classical simpli�cation:

� The noise is assumed uncorrelated and thus B is diagonal:

B =




E(|W1|2) 0 . . . 0
0 E(|W2|2) . . . 0
... ... . . . ...
0 0 . . . E(|WN |2)


 (4.14)

� the antennas are identical and the noise has zero mean. Then, B = σ2
sId where

Id is the identity matrix (N × N) and σ2
s is the variance of the noise on each

antenna.

The three matrices R, P, B have the classical properties of covariance matrices:

� de�ned semi-positive,

� all the eigenvalues are real, positive or zero,

� for each matrix, it exists an orthogonal basis: directions of eigenvectors are mutu-
ally orthogonal and the multiplicity of each eigenvalue is equal to the dimension
of the associated eigensubspace.

4.3.3 Determination of the number of incident waves
We assume that the number of antennas is greater than the number of signals we want
to detect: N > D.
The rank of P is assumed to be equal to D. As N > D, the (N ×N) matrix APA† is
singular (rank D), thus:

det(APA†) = det(R− σ2
sId) = 0 (4.15)

Eq. 4.15 implies that σ2 is one of the eigenvalues of R. Considering that λ1, λ2, λ3,
. . . , λN , the N eigenvalues of R and the properties of the matrix, these eigenvalues are
real, positive or null. We can arbitrarily sort them in descending order:
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λ1 ≥ λ2 ≥ λ3 ≥ · · · ≥ λN−1 ≥ λmin ≥ 0 (4.16)

We consider σ2
s is associated with the minimum eigenvalue of R. A covariance

matrix R formulation satisfying 4.15 by construction can then be written as:

R = APA† + λminId (4.17)

The N eigenvectors ei of the matrix R verify:

Rei = λiIdei i = 1, . . . , N (4.18)

From Eq. 4.17, we can write:

(APA†ei) = (R− λminId)ei = (λi − λmin)Idei (4.19)

This expression is null for all the eigenvectors corresponding to the minimum value:

(APA†ei) = 0 ; λi = λmin (4.20)

Thus, the eigenvectors, corresponding to the minimum value λmin, are also eigen-
vectors of the matrix APA† for the null eigenvalue and they belong to the kernel of the
corresponding application:

ei,λi=λmin ∈ Ker(APA†) (4.21)

The size of this subspace is equal to the multiplicity β of the corresponding eigenvalue
λmin. It is also equal to N−r, where r = rank(APA†) and r ≤ D (in the general case).

Since it was assumed that all the column vectors of the matrix A were linearly inde-
pendent, it follows that rank(APA†) = rank(P) = r. It means also thatKer(APA†) =
Ker(PA†). Therefore:

rank(P) = N − β (4.22)

The N values given by 4.16 can be classi�ed as follows:

λ1 ≥ λ2 ≥ λ3 ≥ · · · ≥ λr ≥ λr+1 = λr+2 = · · · = λN = λmin (4.23)

Two essential cases can be explained:

First Case The matrix P has the maximum rank (r = rank(P) = D). This is
the case when the algorithm MUSIC is fully operational. The D columns vectors of
the matrix P are here linearly independent, i.e. that the D incident signals are not
correlated, or are not fully correlated. The relation 4.23 can be written as:

N − β = D (4.24)
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Moreover, always in this �rst case, the condition of the rank of P implies that:

Ker(PA†) = Ker(A†) (4.25)

Thus, the eigenvectors associated with λmin, verifying the relation 4.20, equally
veri�es:

A†ei = 0 (4.26)

Associated with the minimum eigenvalue λmin, the eigenvectors are orthogonal to
the D modal vectors of the matrix A, therefore they are orthogonal to G. The subspace
(with β dimension), which is generated by these eigenvectors, is the Noise subspace
previously introduced. The others eigenvectors, which are associated to the eigenvalues
which has a higher level, belong to the Signal subspace (which has a dimension equal
to D = rank(P)). The two subspaces Signal and Noise are orthogonal.

Second Case The matrix P has not a maximum rank (r = rank(P) < D). P is
singular here and some incident signals are correlated between them. The algorithm
MUSIC encounters its fundamental limit and, in general, it cannot determine the pa-
rameters of the incident signals. The matrix P is singular, and the relation 4.27 is not
accurate. It can be written as:

Ker(A†) ⊂ Ker(PA†) (4.27)

Thus, the eigenvectors which are associated to λmin and checking 4.20 (therefore
belonging to Ker(PA†)), are not necessary included in Ker(A†), and they are not
orthogonal to the subspace Signal. The algorithm MUSIC searches the signals which
are characterized by vectors whose the orthogonal projections on the subspace Noise is
null: this algorithm can not be operational. In this second case the relationship 4.24
becomes:

N − β < D (4.28)

The number of detected signals is less than the number of incident signals really
present (it gets a lower limit for the number of signals).

To explain the algorithm, we now assume that we are in the �rst case which is
described above: the number of signals is known and we search now their characteristics,
including the direction of arrival.

4.3.4 Direction of Arrivals: calculation of MUSIC Spectrum
The signals are assumed uncorrelated, thus the minimum eigenvalues of R is β = N−D:

λmin = λD+1 = · · · = λN (4.29)



Presentation of MUSIC Algorithm 91

VD+1, VD+2, . . . , VN are the β eigenvectors corresponding to the eigenvalue λmin.
All of them verify the relation RV = λminIdV. They generate a noise subspace which
is orthogonal to G.

We introduce the (N ×β) matrix EB whose columns are formed by the eigenvectors
of the noise space. Y is any vector in the space Ξ:

Y = [Y1 . . . YN ]T (4.30)
The projection of Y in the noise subspace is then EB

†. A vector Y belong to the
signal subspace when its projection is null. The square of the modulus of this projection
is Y†EBEB

†Y. We seek a vector orthogonal to noise.

Thus, the MUSIC algorithm looks for the modal vectors in the continuum which
maximizes it and belongs to the subspace Signal which is determined by the eigenvectors
V1, V2, . . . , VD of the matrix R. For example, if a single angular parameter φ is sought,
we de�ne the spectrum PMUSIC(φ) as the following expression:

PMUSIC(φ) =
a†(φ)σ2

sIda(φ)
a†(φ)EBEB

†a(φ)
(4.31)

with a†(φ)σ2Ida(φ) which normalizes the expression. If the noise is strictly zero,
the values of the spectrum PMUSIC are in�nite for all a(θ) belonging to the subspace
Signal. If there is noise, the subspace Signal is only located with a certain inaccuracy
and we called it the estimated subspace Signal Ĝ. Then, the spectrum presents maxima
in the vicinity of the points where the vectors of the continuum Ω are almost orthogonal
to the subspace Noise. The D values φi (i = 1, 2, . . . , D) of the positions of the picks
on the graphic of the spectrum correspond to the incident angles of the D signals.

In practice, there is no access to the entire continuum Ω which contains an in�nite
number of modal vectors. The phase of calibration of the system only allows the re-
ceivers to determine a �nite number. For example, M vectors a(φk) (k = 1, 2, . . . ,M).
The maxima of the spectrum no longer correspond to the directions of the real incident
waves, but among from the M calibrated directions φk, they correspond to those which
are the closest. To get accurate directions of the incident signals, we follow the phase
of research of the maxima (approached) of the spectrum by an interpolation phase to
obtain the absolute maximum.

In the case of a continuum depending only on two angles in elevation θ and in
azimuth φ, we de�ne the spectrum by the function of two variables:

PMUSIC(θ, φ) =
a†(θ, φ)σ2

sIda(θ, φ)
a†(θ, φ)EBEB

†a(θ, φ)
(4.32)

The principle of the calculation with the algorithm MUSIC is here quite similar to
the previous case 4.31, except that the maxima are seek for two angular variables θ and
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Figure 4.2: MUSIC Spectrum with three target in φ = 70◦, 90◦, 100◦

φ.

Fig. 4.3.4 represents an example of MUSIC spectrum in 2D.
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Figure 4.3: MUSIC Spectrum in 2D with three target in φ = 70◦, 90◦, 100◦ and θ = 5◦, 7◦, 22◦

4.4 Improvement of MUSIC: Weiss Friedlander method
The method of Weiss-Friedlander is based on the MUSIC algorithm. However, it pro-
poses to improve the robustness considering positioning errors of the antennas in the
receiving array. It is particularly e�ective for low amplitudes errors.
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This method o�ers a way to seek the iterative direction of arrivals of the targets and
the unknown position of antennas in the receiving array.

4.4.1 Calibration using the optimization of a multidimensional �tness
function

The method is based on the multidimensional algorithm MUSIC where we seek the
vector of the Direction of Arrivals (DOA) φ̂ = [φ̂1, φ̂2, . . . , φ̂D] as:

φ̂ = argmin
D∑

p=1

||EB
†a(φp)||2 (4.33)

where EB sizes (N × N − D) and EB is the matrix of the eigenvectors which are
associated with the minimum eigenvalue λmin.

This method incorporates antenna position parameters into the model. If we include
these parameters in an unknown variable, called ε, this method o�ers a �tness function
whose the global minimum is reached for the real values of DOA φ̂ = [φ̂1, φ̂2, . . . , φ̂D]
for the actual values of ε. This �tness function is de�ned as:

F (φ1, φ2, . . . , φD, ε) =
D∑

p=1

||EB
†a(φp)||2 (4.34)

Then, the global minimization of this function is transformed in two minimizations
carried out alternately, �rst in the space of the φ, then in the space of the ε, until the
convergence of the algorithm.

So, we want to determine the unknown parameter ε. For example, it is represented
here by a vector r comprising all the antennas coordinates. The di�erent steps of the
algorithm are:

� Guess value for the parameters of the antenna ε is de�ned: the initial form the
receiving array, i.e. the initial position of each antenna (xn, yn) (cf Chapter 2),
these coordinates are summerized into the vector r0,

� From this position r0, a �rst estimate of DOA (φ1,0;φ2,0; . . . ;φD,0) is computed,
minimizing the �tness function according to φ,

� Then, minimizing the �tness function for the parameter r, which contains only the
coordinates of the antennas, �xing in advance (φ1, φ2, . . . ;φD) to the previously
obtained values (φ1,0;φ2,0; . . . ;φD,0) respectively.

� it remains to do a second time a search for DOA using the new parameters of the
receiving array, i.e. using the values of the coordinates of the antennas, until the
convergence of the solution.
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4.4.2 Linear approximation of the in�uence of the positions errors of
antennas

To solve the third step of the algorithm (minimization of the �tness function to �nd an
estimate of r), we could apply the Newton algorithm. However, in practice, r is a large
size vector. Thus, Weiss and Friedlander method proposes to apply a linear approxi-
mation of the in�uence of errors of the positions on the directional vector. Taking the
assumption that the approximate antennas coordinates (including positioning errors)
are not too far from the initial coordinates, they proceed to a development in the �rst
order of the elements an(φp, r) of the analysis vector (where φp is now known) in the
vicinity of the initial position r0.

an(φp, r) = exp(jπ [(xn + ∆xn) cos(φp) + (xn + ∆xn) sin(φp)])
≈ an(φp, r0) [1 + jπ(∆xn sin(φp) + ∆yn cos(φp)]

(4.35)

where xn and yn are expressed here in half of wavelengths.

Extending the latter expression to all the elements of a vector a(φp, r) which is then
expressed as the sum of a initial term (xn,yn) and a term of disturbances (∆xm,∆ym).
Then, giving a matrix form of the obtained expression, we can write the following
expression:

F (φ1, φ2, . . . , φD, r) =
D∑

p=1

||zp −Wpδxy||2 (4.36)

with

Wp = −jπEB
† (diag [a(φp, r0) cos(φp)] , diag [a(φp, r0) sin(φp)]) (4.37)

and

zp = EB
†a(φp, r0) (4.38)

The vector zp and the vector Wpδxy, which sizes (N −D), represents respectively
the nominal term projections and forward disturbance on the subspace noise. The
vector zp and matrix Wp, which sizes (N − P × 2N − 2), depend on the estimation of
DOA which is realized in the previous step. Finally, only:

δxy = [∆x2,∆x3, . . . ,∆xN ,∆y2,∆y3, . . . ,∆yN ]T (4.39)
depends on the parameters of the antenna.

The real solution that minimizes the �tness function is given by:

δxy =
[
<(W†W)

]−1
<(W†Z) (4.40)
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where W and Z are de�ned by the following expressions:

W =
[
W T

1 , W
T
2 , . . . , W T

D

]T (4.41)
and

Z =
[
ZT1 , Z

T
2 , . . . , ZTD

]T (4.42)

4.5 Hypothesis for simulations of direction of arrival
The goal of the simulations is to verify the robustness of the algorithms MUSIC and
Weiss Friedlander which are described in the previous sections, including positioning
errors on each antennas.

The algorithms of DOA estimation are optimally when the position of each antenna
is known. Considering �oating antennas concept, as we have introduced in Chapter 2,
each antenna would be placed on a buoy and will move with more or less freedom. To
know the antenna position, each antenna can be equiped with a tracking system type
as GPS (these points are detailed in Chapter 3). Unfortunatly, the knowledge of the
position is not perfect and it provides an accuracy of a few meters. The residual error
can be represented, for each position x, y and z, with a normal variance σ2

e .

Moreover, for all the simulations, the following hypotheses are taken:

� A receiving array with a better angular resolution δφ = 5◦ than the receiving
array de�ned in the previous chapters is de�ned (cf Chapter 1). So, a N = 20
antennas array is used with an identical spacing interelement equal to λ/2.

� The targets are distant from the receiving array and the signals emitted by the
latter are supposed to be plane wave. The amplitudes of the signals are assumed
equal and unitary.

� All sources of noise are represented by a Gaussian white noise with a variance σ2
s

is arbritrary equal to 0.1.

� The number of measurements (for calculation of the correlation matrix) on each
antenna is 24.

� For our study, we will assume that the continuum Ω, theoretically in�nite, will be
su�ciently representative of all the possible solutions of the directions of arrival,
to overcome an interpolation. This is why, the continuum is discretized with a
step of 0.1◦ for the simulations. This is quite satisfactory for the analysis of the
performance of the algorithms.

� Positioning errors of the antennas will be taken into account on only 2 dimensions:
longitudinal and transverse, not in the vertical dimension. We therefore consider
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that the targets and the receiving array belong to a single plan. Each antenna is
identi�ed in the plan by its coordinates x̃n + ∆x̃n and ỹn + ∆ỹn, with ∆x̃n and
∆ỹn the positoning errors (cf Chapter 2 and 3).
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Figure 4.4: Window of 20◦ around the DOA 120◦ in the MUSIC Spectrum

For simulations of the algorithm MUSIC, the search of DOA is not performed on
the whole angular spectrum [−90◦, 90◦], but only in an angular window around the true
value of targets DOA (it avoids too many false detections). This condition is legitimate:
in practice, MUSIC is used as a High Resolution method, to limit the angular spectrum
of search. After comparison with the performance of MUSIC, depending on the size of
the angular window, the window will be made equal to 20◦: MUSIC therefore tries to
�nd a DOA in a window of 20◦ around the true direction of arrival, as shown for exam-
ple in Fig. 4.4. Regarding the Weiss-Friedlander method, the angular spectrum will be
analysed completely. This is a necessary step for the convergence of the algorithm.

Finally, the simulations must highlight the following points:

� with MUSIC: the robustness of the targets detection, introducing positioning er-
rors in the antennas positions.

� with Weiss-Friedlander method: the robustness of the targets detection, introduc-
ing positioning errors of the antennas, checking the convergence of the algorithm
toward the real DOA.

4.6 Programming of the algorithms
The program takes into account the hypothesis of simulation presented in the previous
section. Nevertheless, for both programmed methods (MUSIC-Weiss and Friedlander



Programming of the algorithms 97

method), the following parameters are variables and can be changed at will:

� the number of targets and their associated DOA

� the kind of errors which is added to the errors of the positions of the antennas,

� the number of realizations which are made from the random draws of the posi-
tioning errors, to mean the results of the algorithms for a given variance σ2

e .

4.6.1 MUSIC programming

Figure 4.5: MUSIC algorithm
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This program implements the MUSIC algorithm, performing several random draws
of the positioning errors of the antennas (for a given variance). The functional organiza-
tion chart of this method is represented in Fig. 4.5. It is presented as a graph showing
of the percentage of detection of targets according to the magnitude of deformation of
the receiving array (in dB) given by the relationship:

∆r = 20 log
σe
d

(4.43)

where ∆r is the magnitude of the positioning antennas errors in the receiving array
de�ned with σ2

e .

4.6.2 Weiss-Friedlander programming
The programming of the Weiss-Friedlander method is the same as MUSIC, adding the
double loop convergence of the estimation of the DOA and the antenna positions in the
receiving array. The functional organization chart of this method is represented in Fig.
4.6.

4.7 Simulations and results
4.7.1 Performances of the MUSIC algorithm
The MUSIC algorithm obtains a spectrum on which the search of maxima results in
the detection of targets and their DOA. If the detection is optimal and e�ective for a
�xed antenna whose geometry is perfectly known, it is strongly deteriorated when the
antennas position are not exactly identi�ed. Fig. 4.7 represents the pseudo MUSIC
spectrum in the case of the detection of 3 targets (with DOA equal to 50◦, 95◦ and
120◦) for an array without positioning errors, and for an array with two positioning
errors (de�ned with a variance σ2

e = 0.01λ2 and σ2
e = 0.001λ2).

It is noted that the maxima with both positioning errors are far from the case with-
out psoitioning errors and the amplitudes of the deformed array are lower: the detection
of spectrum peaks is thus more di�cult.

It is therefore interesting to quantify the limits of the functioning of the algorithm
MUSIC, depending on the deformation of the receiving array. For this, we need to
vary the magnitude of the deformation of the array (varying the variance of the normal
distribution law, used to draw the random positioning errors). For each value of the
variance σ2, 200 random draws are made, to average the results. Then, we represent
the evolution of detections according to the errors amplitudes, represented by ∆r.

The detection of target will be considered successful if MUSIC provided a DOA
estimated at ±2◦ of the real DOA. When the number of target we want to detect is
superior to one, detection will be considered successful if all DOA of the targets are
correctly identi�ed.
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4.7.1.1 Impact on the size of windows on the detection of targets

Fig. 4.8 represents the pseudo MUSIC spectrum according ∆r for di�erent size of the
window. It allows to compare the performance of MUSIC depending on the size of the
observation window (for the detection of a target at 30◦).

The use of a window, even if it is large (60◦), signi�cantly improves the detection
capability of the algorithm. For the same purpose of detection, 4 dB in the additional
deformation is tolerated. It means 0.02λ in the positioning of the antennas.

This reduction of the angular spectrum can be realized by another method which are
dedicated to the DOA, as the beamforming (which is not a part of the High Resolution
methods). This method has to be used before MUSIC and it would restrict the angular
spectrum to a gap around the DOA which is searched.

In the following MUSIC simulations of MUSIC, the window will be equal to 20◦.

4.7.1.2 Impact of the number of targets to detect

Fig. 4.9 gives the percentage of detection depending on the magnitude of deformation of
the array, for a variable number of targets we want to detect. Four directions of targets
were chosen at 50◦, 95◦, 120◦ and 160◦. Observing the general shape of the curves, the
detection of several targets is necessarily more burdensome than the detection of one
for the algorithm (for ∆r = −20 dB there is 70% of target detection with one target
and only 15% with four targets).

To highlight this result, an example is taken. Considering �oating antennas with a
GPS to control their positions. The accuracy of the GPS is equal to a few meters: we
assume that σe = 3 m. For an operating frequency f = 10 MHz, σe = 3 m corresponds
to σe = λ/10 and ∆r = −14 dB. So, we obtain:

� 47% for the detection of one target,

� 25% for the detection of two targets,

� 13% for the detection of three targets,

� 5% for the detection of four targets.

Considering our example, the algorithm MUSIC are reached relatively quickly. In-
deed, if we want to detect a signi�cant number of targets every time, deformations of the
array must be minimal, i.e. below ∆r = −38 dB for each antenna to have a detectoin
of four antennas at 90%.
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4.7.1.3 Detection of close targets
Fig. 4.10 shows the evolution of the detection of close targets, whose the angular gap
is variable, depending on the magnitude of deformation of the receiving antenna. One
case with two targets are introduced with the �rst target at 30◦ and the second target
at 36◦. We recall that we work with a 20-antenna array and thus its φ3dB = 5◦.

This simulation shows that when the targets are close, the deformation of the re-
ceiving array has a degrading e�ect on the detection of the targets. For example, taking
the example given in the previous section, at ∆r = −14 dB, the number of detection
is less than one target. However, if the deformation is weak (less than -30 dB), the
number of detected targets is acceptable (1.8 targets).

It would appear that MUSIC is relatively robust against deformation of the array in
relation to its ability to distinguish close targets. However, the MUSIC method needs
some improvements to have good detection power when the targets are close and the
positioning errors are large (>-30 dB).

4.7.2 Improvements with Weiss-Friedlander method
The Weiss-Friedlander algorithm is an iterative algorithm for the joint estimation of real
antennas positions and targets DOA. It is usually applied as an antenna treatment when
the deformations of the receiving array are small and more or less correlated between
each antenna (deformations of the array in an arc for example). It is interesting, in the
case of our study, to observe its behaviour with random deformation on each antenna.
For example, Fig. 4.11 and Fig. 4.12 show the antennas positions estimated by this
method and their real positions, for two values of the variance of the amplitude of the
error σe = 0.008λ and σe = 0.08λ.

The convergence of the algorithm is clear. The convergence of the algorithm is faster
when the positioning errors are weak. However, the estimated antennas positions are
slightly di�erent from the real position.

This problem may be due to several factors:

� the method has been developed for small deformations in the receiving array. It
operates a less powerfully for large deformation.

� the method was developed for correlated deformations between antennas (array
deformation in an arc for example). The fact of introducing random indepen-
dent errors for each antenna certainly makes the convergence of the method more
di�cult.

� the convergence criteria may be relative to the �tness function, the stagnation
of estimated antennas positions during the iterations of the algorithm etc... The
criteria we used is double: based on the �tness function and on the stagnation of
the estimated antennas positions However, we have no guarantee to reach a global
minimum with this criteria.
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Fig. 4.13 allows to analyse the improvements of this method compared to the algo-
rithm MUSIC. It represents the average number of targets identi�ed in relation to these
six targets (DOA equal to 30◦, 60◦, 80◦, 100◦, 130◦ and 160◦) depending on the size
of the deformation of the receiving array, and this for the algorithm MUSIC without
windowing and the method Weiss-Friedlander without windowing (in its algorithmic
part referring to MUSIC).

The improvements are clearly signi�cant, especially for the deformations of the array
which is between -10 dB and -32 dB, corresponding to the positioning errors from 0.025λ
to 0.3λ. The Weiss-Friedlander method thus provides improvement of the performance
in a range of error corresponding to our practical case (errors equal to few meters).

4.7.3 General Results of MUSIC and Weiss-Friedlander method
In the practical context of our study, we can consider positioning errors of antennas of
few hundredth of λ (for example 0.1λ = 3 m at f = 10 MHz corresponding to the GPS
accuracy).

With the simulations presented in the preceding paragraph, we can emphasis the
following results:

� the MUSIC algorithm, used without windowing, does not detect a target at 120◦

in 25% of cases at ∆r = −25 dB (cf Fig. 4.8). A window of 20◦ can switch to
55%.

� the simultaneous detection of 4 targets (DOA equal to 50◦, 95◦, 120◦, 160◦) with
MUSIC is assured in 30% of cases, having taken a window of 20◦ (cf Fig. 4.9).

� the Weiss-Friedlander method provides a good estimate of the antennas position
de�ned with random errors, even if this method was �rst developed for errors and
low correlation between receivers. The good knowledge of the position of antennas
permits MUSIC to �nd DOA, reducing the errors of detection (cf Fig. 4.11 and
Fig. 4.12).

� the simultaneous detection of 6 targets (DOA equal to 30◦, 60◦, 80◦, 100◦, 130◦

and 160◦) is better with the method of Weiss-Friedlander: 3.8 targets will be
detected versus 2.8 targets for MUSIC without windows (cf Fig. 4.13). The
possibility to detect one more target is not negligible.

4.8 Conclusion of Chapter 4
The study carried out through this Chapter has analysed a few representative examples
the robustness comparison of two processing algorithms aiming at detecting the direc-
tion of arrival of targets.
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It appears that the MUSIC algorithm alone can not provide good performance in
terms of detection. It requires an improvement in its performance, provided by two
methods presented in this Chapter: imposing a windowing of 20◦ and the Weiss Fried-
lander method.

The �rst idea is to restrict the angular zone for research targets by MUSIC, this can
be done by another method of detection, such as beamforming. The second is the Weiss
Friedlander method, which improves the detection of targets over MUSIC algorithm
and provides an estimate of the antennas positions of the receiving array. The latter
point is very interesting as one the correction method of Chapter 3 was not robust to
positioning errors.

The buoys are not free to move at will by the waves, tides and wind, failing which
they drift apart from each other. Also, these buoys have a physical link (cable) between
them (cf Chapter 2). Thus, the deformation of the array will no longer be completely
random, but will be partially correlated.

Mechanical studies or experimentations conducted to identify the real feasibility of
such systems would help to clarify the types of deformations in the receiving array and
to adapt accordingly processing techniques antenna these strains for detecting DOA of
targets. To validate these two last points, dynamic simulation need to be operated.



Conclusion of Chapter 4 103

Figure 4.6: Weiss Frielander algorithm
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Figure 4.7: MUSIC spectrum with an array without positioning errors and with positioning errors

Figure 4.8: MUSIC Performance according to the size of the observation window for a target at 120◦
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Figure 4.9: Robustness of MUSIC according to the number of targets we want to detect

Figure 4.10: Robustness of MUSIC according to the detection of two close targets



106 chapter 4

Figure 4.11: Real positions and estimated positions of antennas for a variance σe = 0.008λ

Figure 4.12: Real positions and estimated positions of antennas for a variance σe = 0.08λ
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Figure 4.13: Robustness of MUSIC and Weiss Friedlander for the detection of six targets (DOA equal
to 30◦, 60◦, 80◦, 100◦, 130◦ and 160◦)



108 chapter 4



Chapter 5

Realization and measurement of a
sea �oating antenna

5.1 Introduction
In the previous chapters, we have seen that the movements of the buoys of the HFSWR
alter the radiation pattern, resulting mainly in the increase of the SLL. We have pro-
posed a correction method to attenuate these disturbances.

A second issue introduced by these movements relates to the modulation of the re-
ceived signal on the moving antennas. In fact, the displacement of every elementary
buoy on the sea surface, independently of the array deformation, generates some mod-
ulations in the received signal, introducing a spreading of the Bragg lines. As we have
seen in Chapter 1, these Bragg lines determine some oceanographic parameters, such
as the wind speed or the radial velocity of the surface currents. If the positions of the
Bragg Lines cannot be determined with a good accuracy, it will be useless to put the
antennas on buoys for oceanographic applications. In the same way, considering the
monitoring of a sea area, targets are often detected by their Doppler shift. But targets
can only be detected if their radial speed is di�erent from the Doppler frequencies of the
�rst order Bragg lines. If the Bragg lines are spread, it means that less targets could
be detected.

Some theoretical studies have been carried out on this topic. Based on [37], the
signal received by one buoy has been modelled in section 5.2 to give a �rst insight. An
experimentation is then presented, with one buoy at sea. It has been conducted using
an existing oceanographic radar, replacing one of the receiving antenna by a buoy.

5.2 Simulation of the spreading of the Bragg lines with a
�oating antenna

This section is directly inspired from [37] which presents the perspective to use a re-
ceiving array of antennas on barges. This article presents suitable results with a limited
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Figure 5.1: Comparison of a Doppler cut between a �xed antenna and a �oating antenna.

spreading of the Bragg lines for a sea state 3.

The signal received on the �oating antenna is studied taking into account the roll,
the pitch and the displacement of all the antennas of the receiving array. The di�erent
degrees of freedom are de�ned using the modelling of the buoy movement presented in
Chapter 2. The simulation was computed with a global acquisition time of 20 s, con-
sidering a pulsed radar transmitting at 15 MHz. Then, a range Doppler representation
of the received signal is computed to quantify the disturbances.

Fig. 5.1 presents a cut of the range Doppler map. It compares the Bragg lines of
one �xed antenna and the Bragg lines of one �oating antenna. We can clearly see for
the �oating antenna a spreading of the positive Bragg line and a strong attenuation
of the negative Bragg line. Both e�ects would totally alter the calculations of the
corresponding oceanographic parameters. In addition, the spreading of the positive
Bragg line would possibly hide some targets for the monitoring applications.

However, contrary to the modelling of the array in the previous chapters, the time
evolution of the tilt angle is here the most important point de�ned in [37]. Obviously, it
cannot be described with a �ne accuracy in our model. As a consequence, we can only
conclude that the disturbances generated by the roll, the pitch and the buoys displace-
ments can strongly modify the Doppler representation and that a real measurement is
needed.

The next parts of this chapter are thus focused on the experimentations we have
realized with a �oating antenna. They permit to quantify the disturbances generated
by the movement of the sea and more particularly the spreading of the Bragg lines in
real conditions.
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5.3 Introduction to the experimentations
Next to the city of Porspoder in French Brittany (cf. Fig. 5.2), on the 'La Garchine'
cape, the French navy hydrographic and oceanographic department (SHOM), in collab-
oration with the company Actimar, is operating an experimental HFSWR to measure
the current in the Iroise sea. It has been in use for two years and will continue for at
least two more years. It is therefore a reliable radar, allowing us to focus on the �oating
antenna concept. Furthermore, this experiment was conducted in collaboration with
Prof Pierre Flament, from the University of Hawaii, who already knows the functioning
of this particular radar. Finally, the logistic was quite easy there, there are many ports
with all the necessary marine shops. The radar is a WERA system, built by Helzel

Figure 5.2: Localization of Porspoder in French Brittany

messtechnik (Hamburg, Germany). It is a phased array system, in a quasi-monostatic
con�guration. The basic idea of this experiment was to replace one of the receiving
antenna by a �oating antenna (cf. Fig. 5.3). The term '�oating antenna' refers to the
platform with the antenna and the other equipment. An additional long coaxial cable
is used to link the �oating antenna to the position of the �xed turned o� antenna. This
way, all the radar infrastructure can be reused.

Figure 5.3: Presentation of the experimentation
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5.4 WERA description
In the oceanographic domain, two oceanographic HFSWR are usually used: the �rst
is the Costal Ocean Dynamics Applications Radar (CODAR) developed by Barrick [8].
The second one is the WERA system (WEllen RAdar) which is a shore based remote
sensing phased array system, originally developped at the university of Hamburg by
Klaus-Werner Gurgel et al. [15]. Both can be used to measure the ocean surface
currents and the wind speed and direction. SHOM has chosen to operate a WERA.

5.4.1 Geometry of a WERA radar

Figure 5.4: Air picture of the Porspoder site

The geometry is illustrated in Fig. 5.4. The transmitting and receiving array are
positioned along the coast. The radar operates in a frequency modulated continuous
wave mode (FM-CW), it thus emits continuously a very low power, without any gating
nor pulsing sequence. As a consequence, the receiver has to be located in a null of the
transmitter to suppress the direct signal from the emitter.

A transmitting array of 4 antennas (cf. Fig. 5.5) is thus used. The shape of the
array and the phases applied to the antennas form a main beam toward the sea with a
zero in the orthogonal direction where the receiving array is located. Its array factor is
plotted in Fig. 5.6.
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Figure 5.5: Transmitting array of a WERA radar.
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Figure 5.6: Antennas positions in wavelength of the transmitting array with its associated array
factor.

The receiving array is a regular linear array of 16 antennas with half wavelength
spacing. The receiver is continuously switched on. The signals from 16 antennas are
processed in parallel. It has a typical azimuthal resolution of 3◦.

By convention, antenna 1 is the nearest to the emitter, antenna 16 is the furthest.
The location of the �oating antenna should be carefully chosen. This �oating an-

tenna will be linked by a cable to the �xed antenna it will replace. This cable should
be as short as possible. Two locations are therefore possible, marked by a red dot and
a white dot in Fig. 5.4. In addition, in order to suppress the direct signal, it must be
located in the null of the transmit array. Only the red dot full�lls this last condition.
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Consequently, the �xed antenna which will be disconnected is antenna 16 (to shorten
the additional cable).

5.4.2 Shelter
The shelter houses all the electronics of the WERA (cf. Fig. 5.7), the receiving part as
well as the transmitting part.

(a) (b)

(c)

Figure 5.7: Picture of the Shelter (a), acquisition system of the WERA (b) and the input of the
transmitters and the outputs of the 16 receiving channels (c) which are inside the shelter

All separated received signals from the 16 antennas are digitally registered. So the
signals of each antenna can be observed, independently of the others. In particular, the
signal coming from the buoy will be extracted.

5.4.3 Signal Processing of WERA
The signal processing in WERA consists of the range Doppler analysis of the back
scattered signals for each channel (or antenna) of the receiving array.

The range Doppler processing is illustrated in Fig. 5.8 and was explained in the
�rst chapter. The transmitting signal is a frequency ramp. The time length for one
chirp is Tr and there are Nchirp chirps. So, the total integration time is TrNchirp. The
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Figure 5.8: Range Doppler processing with a WERA

maximum Doppler frequency fmax is then:

fmax =
1

2Tr
(5.1)

with a Doppler resolution ∆f of:

∆f =
1

TrNchirp
(5.2)

The range resolution is c
2B , with B the bandwidth of the chirp and c the celerity

(cf. Chapter 1). Normally, a 100 kHz bandwidth is chosen, corresponding to a range
resolution of 1.5 km. A typical work frequency is equal to 12.5 MHz. In order to observe
the slow ocean parameters, the received signal is typically integrated over 10 min.

5.5 Building the �oating antenna
5.5.1 Choice of the antenna
The disconnected antenna of the receiving array can not be used for the experimentation
as it is too large. An active antenna is chosen instead. It is made by Rhode and Shwartz
(cf. Fig. 5.9) and it is referenced �HE011 Aktivantenne� [3]. Its output power is the
same as the passive antennas used in the WERA.
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Figure 5.9: HE011 Rohde & Schwarz Aktivantenne

5.5.2 The �oating antenna
The �oating antenna is composed of two main elements, a hermetic box and a small
boat.

(a) (b)

Figure 5.10: (a) the hermetic box and (b) the zodiac.

The hermetic box protects all the electronics boarded on the �oating antenna from
the projections of sea water. Inside, we distinguish a GPS RTK and an inertial central
(presented in the next section). The active antenna is attached outside the box (cf. Fig.
5.10(a)).

The zodiac is the platform which permits the hermetic box to �oat. The zodiac is
not directly anchored to the seabed. A buoy is used to limit the mechanical tensions
generated by the sea movement. It has to be noted that using this kind of boat as a
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measurement platform is not optimum because it is �oating on top of the waves. Thus,
it is subject to all the sea movements, even the high frequency ones.

5.5.3 The cable
A 300 m coaxial cable is used to link the �oating antenna to antenna 16 in the receiving
array. The �rst part of the cable is on the ground, between the free connector of antenna
16 and the edge of the rocks along the coast. The second part is between the rocks and
the �oating antenna. This last part will move with the sea elevation and the tide and
it must therefore be protected. To this end, a �oating electrical sheath is added. Each
of the ends of the electrical sheath is �lled with polyurethane foam, to prevent the sea
water from entering into the sheath.

(a) (b)

Figure 5.11: The cable with its yellow sheath (a) when the sea is high (b) when the sea is low with
a lot of rocks

A picture of the cable with its protection is in Fig. 5.11. We can see that the �oating
cable follows the sea elevation, limiting the frictions on the rocks generated by the sea
movement.

5.5.4 The GPS
A GPS in RTK mode is used to know with accuracy the successive positions of the
�oating antenna. It is composed of two parts. The �rst one, called base, is �xed and
is used as a reference and the second one, called mobile, is on the �oating antenna. A
UHF link between the base and the mobile permits to improve the accuracy of a normal
GPS down to centimeter. Each part is composed of:

� a GPS antenna to receive the signals from the satellites,

� an independent battery which guarantee an autonomy of 10 hours at sea,
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(a) (b)

Figure 5.12: (a) Picture of the GPS base near antenna 16 (b) Picture of the GPS module in the
hermetic box of the �oating antenna.

� an acquisition card,

� a VHF module for the communication between the mobile and the base.

An inertial central is used to measure the roll and the pitch of the �oating antenna
during the experimentation.

The next section presents the results of the �rst measurements

5.6 First measurements results
We will �rst have a look at the movements of the �oating antenna in order to evaluate
their magnitude.

5.6.1 Positions of the �oating antenna
Fig. 5.13 shows the latitude and the longitude in degree of the �oating antenna measured
by the GPS RTK during all the experimentation, from the departure at the nearest
beach (top right of the �gure) to the return to the same beach. Fig. 5.14 is a zoom of
the bottom left part of Fig. 5.13, representing the positions of the �oating antenna when
it is anchored during the radar acquisitions. The coordinates have been transformed
to meters. The ways in (to deploy the �oating antenna) and out (to bring back the
�oating antenna to the beach) are indicated. It clearly shows that the �oating antenna
has evolved in a 10m*10m square during the 4 hours of measurements.

Fig. 5.15 represents the altitude of the �oating antenna. The reference time t=0h is
when the GPS has been turned on on the beach before closing the hermetic box. Then,
3 hours were necessary to anchor the �oating antenna and to deploy the �oating cable
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Figure 5.13: Latitude and longitude of the �oating antenna during all the acquisition.
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Figure 5.14: Positions of the �oating antenna around its anchorage during the measurements.

for the measurement of the signal of the �oating antenna. When the �oating antenna
was alone (after t=3h), it was no longer disturbed by a human activity, the curve be-
comes smooth. At the same time, we have started to record the signal. The continuous
increase of the altitude of the �oating antenna corresponds to the tide e�ect which has
increased the sea elevation during the experimentation time. At the end of the recording
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Figure 5.15: Altitude of the �oating antenna in meter during all the acquisition.
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Figure 5.16: Pitch and Roll of the �oating antenna

(t=7h), the curve of the altitude is no longer smooth because of the human activity to
bring it back to the beach. The vertical motion during each measurement movements
appears to have been very low, less than 1 meter.

In the same way, the pitch and roll were measured. Their curves are represented in
Fig. 5.16. Their movements appears to be very weak, ±5◦. This point is highly inter-
esting for our problem as it implies that the modulation of the received signal should
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not be too strong. We can also notice that the pitch is centered around zero while the
roll has a small shift, around 2◦.

5.6.2 Radar measurements by the �oating antenna
A �rst run was done with the standard parameters of the radar: 4096 chirps of 0.26s.
Using Eq. 5.1 and Eq. 5.2, this corresponds to a maximum Doppler frequency fmax
of 1.92 Hz and a Doppler resolution ∆f of 9.40.10−4Hz. The central transmitting
frequency was 12.48 MHz (automatically chosen by looking for a free part of the spec-
trum) with a bandwidth equal to 100 kHz. The 16 signals were processed as previously
described. The range Doppler representation of the �oating antenna is plotted in Fig.
5.18. The result of antenna 15 is also provided as a reference.
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Figure 5.17: Range Doppler representation (a) of antenna 15 and (b) of the �oating antenna.

A �rst look at the results shows that the signal of the �oating antenna has a lower
magnitude. As expected, we can see the �rst order Bragg lines and a zero Doppler
component. Fig. 5.18 shows a cut at 70 km of these two results, along with the result of
antenna 1. The di�erence in magnitude between antenna 15 and antenna 1 is also large.
The signal (de�ned as the maximum of the negative Bragg line) to clutter (de�ned as
the signal outside the Bragg lines) ratios of antenna 1 and of antenna 15 are roughly 25
dB while for the �oating antenna it is only 15 dB. An 8-dB attenuation of the clutter
between antenna 15 and antenna 1 is represented. The shelter is actually located near
antenna 1, so there is some additional cable to link antenna 15 to the shelter. This
explains the di�erence in magnitude between antenna 1 and antenna 15.

Considering the �oating antenna, there is a 14-dB di�erence of the magnitude of
the clutter with antenna 15 and a 22-dB di�erence of the level of the Bragg lines. Once
again, the cable explains some of the di�erence: a 300 meters cable is used to link the
position of antenna 16 to the �oating antenna. This cable has an attenuation of about 12
dB (1.2 dB for 100 feets in a cable RG 213 at 30 MHz). There is also a few additionnal
meters of cable between antenna 15 and antenna 16. But this does not explain the
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Figure 5.18: Doppler plot at 70km for antenna 1, antenna 15 and the �oating antenna.

loss of signal to clutter ratio. The connections of the �oating cable were not properly
soldered and the edge connected to the �oating antenna has been oxydized. Another
possible reason we hadn't time to check is that the signal of the �oating antenna might
be too low for the radar, in other words the signal outside the Bragg lines is not the
clutter but the radar noise.

So regarding the magnitude of the signal, the �oating antenna shows some losses.
But it seems to be able to correctly detect the Bragg lines. We have then normalized
the signal of antenna 15 and of the �oating antenna to the same reference for a thorough
study of these Bragg lines. This is plotted in Fig. 5.19.
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Figure 5.19: (a) Normalized Doppler cut at 70 km, and (b) zoom on the �rst order Bragg lines.
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A small spreading of these Bragg lines is visible (particularly on the negative line)
but it is very limited. The positive line seems to be slightly splitted. But globally, the
Bragg lines are found in both cases at fb = ±0.36 Hz, corresponding to a frequency
equals to 12.34 MHz, with roughly the same maximum. So, it appears that the �oating
antenna can �nd the correct location of the Bragg lines, along with the correct ratio
of these two lines. It is therefore suitable for oceanographic applications. These Bragg
lines are not broaden too much by the sea surface movements, so the �oating antenna
can also be used for monitoring applications. However, for the latter application, an
indepth study has to be carried out on the signal to clutter ratio.
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Figure 5.20: (a) Normalized Doppler cut at 100 km, and (b) zoom on the �rst order Bragg lines.
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Figure 5.21: (a) Normalized Doppler cut at 200 km, and (b) zoom on the �rst order Bragg lines.

Fig. 5.20 and Fig. 5.21 show two other cuts, at 100 km and 200 km respectively.
The conclusions of the cut at 70 km also apply. It is interesting to note that the �oating
antenna performs still well at 200 km: although the signal to clutter ratio is only 5 dB,
the Bragg lines can still be clearly identi�ed.
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Figure 5.22: For run 2, Range Doppler representation (a) of antenna 15 and (b) of the �oating
antenna.

Several other runs resulted in the same conclusions. In particular, the chirp length
has been varied. In Fig. 5.22, the chirp length is 0.1733s. Following Eq. 5.1 and Eq.
5.2, the decrease of Tr permits to see higher Doppler frequencies fmax = 2.89Hz, but
with a lower Doppler resolution ∆f = 1.41.10−3Hz. The Bragg lines are found at the
same position.

This �rst measurement has validated the feasibility of the �oating antenna. Mea-
surements with stronger sea states are however needed. It will also be interesting to
do them with improved platforms, such as the one on Fig. 5.23. The latter, realized
during the Porspoder experimentation, is designed to cut the high frequency waves. But
a heavy sea state has prevented us from putting it at sea.

(a) (b)

Figure 5.23: Floating platform and a tube of the platform which �lled with polyurethane foam
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5.7 Conclusion of Chapter 5
These experimentations have validated the feasibility of a sea �oating antenna. A simple
and cheap sea �oating antenna has been realized and measured, with a calm sea. The
measurements have shown that the sea �oating antenna was able to correctly measure
the Bragg lines and that it was thus suitable for oceanographic applications. It has also
shown that the Bragg lines are only very slightly spread by the sea surface movements.
The monitoring application can therefore be also envisaged. However, the signal to
clutter ratio issue has to be further investigated. Other measurements with improved
platforms and di�erent sea states must be done. These future measurements have also
to include the complete array of �oating antennas. ����������
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Conclusion

The HFSWR is a sensor able to permanently monitor a large array, in particular the
EEZ. This is true for applications ranging from the measurements of the wind to the
detection of ships. This thesis has addressed the main drawback of these radars, its lack
of azimuthal resolution. The large wavelength of the HF band along with the need to
put the receiving array of the HFSWR near the sea surface to correctly excite the sur-
face wave mode makes it di�cult to �nd locations to deploy these radars. The solution
investigated is to put the receiving array of a HFSWR where there is plenty of room:
on the sea. Each antenna is then on a separate �oating platform. However, as the sea
surface movement is a highly complicated one, all the �oating antennas will have some
independent movements, whether one consider the horizontal, the vertical or the tilt
movement. This has raised two main issues that were both addressed in this document.

The �rst issue has concerned the array and its associated radiation pattern. A
phased array functions thanks to the addition in phase of the radiation patterns of all
the elementary antennas. This can no longer work as the sea surface is continuously
moving. Using a model of the movements of the buoys we have developed, we have an-
alyzed the alteration of the radiation pattern and have presented some new corrections
methods accordingly. From a physical point of view, the vertical movement introduces
mainly a variation of the coupling between the elementary dipoles. This corresponds,
from an analytical point of view, to a displacement away from the unit circle of the ze-
ros of the associated polynomial. The vertical correction method thus aims at bringing
these zeros back to the unit circle in order to lower the SLL while keeping a thin main
beam.

The horizontal movement has the main source of disturbances in the deformation
of the array, generating large increases of the SLL. The horizontal correction can be
synthesized by forcing the nulls in the radiation pattern of a deformed array. The goal
is to obtain the same zeros as in the initial undeformed array. Thanks to this detailed
analysis, both corrections methods can be applied in serie. They give quickly a quite
good result, except when the sea is too heavy.

We have then compared our correction methods to well known iterative algorithms,
the GA and PSO methods. Both methods have given slightly better results, but in a
very long time. They are therefore not suitable for our real time application.

127
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The horizontal correction method uses the positions of the buoys. A robustness in-
vestigation of that method to positioning errors had thus been performed. It has shown
that it requires a good knowledge of the positions of the buoys. Besides, we have also
considered the robustness of a DOA algorithm, the MUSIC algorithm, to positioning
errors; the same conclusion as for the horizontal correction method has been drawn. An
improved version of the MUSIC algorithm, the Weiss-Friedlander method has then been
studied. Through an iterative process, the latter algorithm permits to improve both
the DOA estimation and the sensors positions estimation. It thus provides the posi-
tioning accuracy needed for the horizontal correction method and the DOAZ estimation.

The second issue addressed in this thesis is the modulation of the signal received on
the �oating antenna by the movements of the sea surface. If the Bragg lines are not at
the correct positions or are attenuated, the oceanographic applications cannot be done.
If the Bragg lines are spread, some targets can be hidden. Some simulations of this
signal were �rst run but it quickly appeared that the model of the movements of the
buoy we have developed was not suitable for them. Actually, for the modulation issue,
the critical movement is the tilt movement, which cannot be properly rendered by our
model of the movements of the buoy (it is a complicated mechanical issue).

We have therefore built a �oating antenna and have measured it during a campaign
at sea. We have replaced one of the receiving antennas of an existing HFSWR with our
�oating antenna. We were thus able to compare the measured signals of our �oating
antenna to a reference antenna in the same conditions. The Bragg lines were at the
same Doppler frequency, with roughly the same magnitude. They were very slightly
spread. So we can expect to do both oceanographic and monitoring applications.

Further work will include additional measurements in di�erent sea states. First, the
�oating platform used has to be optimized: a better platform can be built to suppress
the high frequency waves and thus to limit the movements of the platform. Then, an
array of these �oating platforms will be measured and our correction methods will be
tested in real conditions.

Besides, some buoys-related sensors should be studied: towed buoys, antennas on
a barge, Synthetic Aperture Radar at HF, along with their advantages/limitations.
These studies will reuse the tools previously developed for the buoys studies. Then, by
combining the advantages of all the HFSWR sensors con�gurations (�xed at coast, on
buoys, on a barge, towed, SAR), a HFSWR with improved resolution could be de�ned.
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